論文の概要: Graph-based Forecasting with Missing Data through Spatiotemporal
Downsampling
- arxiv url: http://arxiv.org/abs/2402.10634v1
- Date: Fri, 16 Feb 2024 12:33:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 16:28:45.860651
- Title: Graph-based Forecasting with Missing Data through Spatiotemporal
Downsampling
- Title(参考訳): 時空間ダウンサンプリングによる欠落データを用いたグラフベース予測
- Authors: Ivan Marisca, Cesare Alippi, Filippo Maria Bianchi
- Abstract要約: 時系列間の関係をグラフとして表現することで、時空間グラフニューラルネットワークは印象的な結果を得る。
既存のほとんどのメソッドは、入力が常に利用可能であり、データの一部が欠落しているときに隠れたダイナミクスをキャプチャできないという、しばしば非現実的な仮定に依存しています。
- 参考スコア(独自算出の注目度): 27.388194667651465
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a set of synchronous time series, each associated with a sensor-point
in space and characterized by inter-series relationships, the problem of
spatiotemporal forecasting consists of predicting future observations for each
point. Spatiotemporal graph neural networks achieve striking results by
representing the relationships across time series as a graph. Nonetheless, most
existing methods rely on the often unrealistic assumption that inputs are
always available and fail to capture hidden spatiotemporal dynamics when part
of the data is missing. In this work, we tackle this problem through
hierarchical spatiotemporal downsampling. The input time series are
progressively coarsened over time and space, obtaining a pool of
representations that capture heterogeneous temporal and spatial dynamics.
Conditioned on observations and missing data patterns, such representations are
combined by an interpretable attention mechanism to generate the forecasts. Our
approach outperforms state-of-the-art methods on synthetic and real-world
benchmarks under different missing data distributions, particularly in the
presence of contiguous blocks of missing values.
- Abstract(参考訳): 空間におけるセンサポイントに関連付けられ、シリーズ間関係を特徴とする同期時系列の集合が与えられた場合、時空間予測の問題は各点の将来の観測を予測することからなる。
時空間グラフニューラルネットワークは、時系列間の関係をグラフとして表現することで驚くべき結果を得る。
それでも、既存のほとんどのメソッドは、入力は常に利用可能であり、データの一部が欠落した時に隠れた時空間ダイナミクスを捉えることができないという非現実的な仮定に依存している。
本研究では,階層的時空間ダウンサンプリングによってこの問題に取り組む。
入力時系列は時間と空間で徐々に粗くなり、不均質な時間的および空間的ダイナミクスを捉える表現のプールを得る。
観測と欠落したデータパターンに基づいて、このような表現を解釈可能な注意機構で組み合わせて予測を生成する。
提案手法は,異なるデータ分布,特に欠落した値の連続ブロックの存在下で,合成および実世界のベンチマークにおける最先端の手法よりも優れる。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Probabilistic Learning of Multivariate Time Series with Temporal
Irregularity [25.91078012394032]
不均一な時間間隔やコンポーネントのミスアライメントを含む時間的不規則。
我々は,非ガウス的データ分布を非パラメトリック的に表現する条件フロー表現を開発する。
提案手法の広範な適用性と優位性は,実世界のデータセット上でのアブレーション研究とテストを通じて,既存のアプローチと比較することによって確認される。
論文 参考訳(メタデータ) (2023-06-15T14:08:48Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
グラフニューラルネットワーク(GNN)は、しばしば予測アーキテクチャのコアコンポーネントである。
ほとんどの時間前GNNでは、計算複雑性はグラフ内のリンクの回数のシーケンスの長さの2乗係数までスケールする。
本稿では,時間的・空間的両方のダイナミックスを効率的に符号化するスケーラブルなアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-09-14T09:47:38Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
本稿では、欠落したデータポイントを再構築するための効果的なモデル学習の課題に取り組む。
我々は,高度にスパースな観測値の集合を与えられた注意に基づくアーキテクチャのクラスを提案し,時間と空間における点の表現を学習する。
技術状況と比較して、我々のモデルは予測エラーを伝播したり、前方および後方の時間依存性をエンコードするために双方向モデルを必要とすることなくスパースデータを処理します。
論文 参考訳(メタデータ) (2022-05-26T16:40:48Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
我々は,多変量時系列の異なるチャネルにおける行方不明データを再構成することを目的としたGRILというグラフニューラルネットワークアーキテクチャを導入する。
予備的な結果は,本モデルが関連するベンチマーク上での計算処理において,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-31T17:47:10Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。