論文の概要: Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling
- arxiv url: http://arxiv.org/abs/2402.10634v3
- Date: Sat, 8 Jun 2024 15:27:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 01:33:30.687841
- Title: Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling
- Title(参考訳): 時空間ダウンサンプリングによる欠測データを用いたグラフベース予測
- Authors: Ivan Marisca, Cesare Alippi, Filippo Maria Bianchi,
- Abstract要約: 時系列間の関係をグラフとして表現することで、時空間グラフニューラルネットワークは印象的な結果を得る。
既存のほとんどのメソッドは、入力が常に利用可能であり、データの一部が欠落しているときに隠れたダイナミクスをキャプチャできないという、しばしば非現実的な仮定に依存しています。
- 参考スコア(独自算出の注目度): 24.368893944128086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a set of synchronous time series, each associated with a sensor-point in space and characterized by inter-series relationships, the problem of spatiotemporal forecasting consists of predicting future observations for each point. Spatiotemporal graph neural networks achieve striking results by representing the relationships across time series as a graph. Nonetheless, most existing methods rely on the often unrealistic assumption that inputs are always available and fail to capture hidden spatiotemporal dynamics when part of the data is missing. In this work, we tackle this problem through hierarchical spatiotemporal downsampling. The input time series are progressively coarsened over time and space, obtaining a pool of representations that capture heterogeneous temporal and spatial dynamics. Conditioned on observations and missing data patterns, such representations are combined by an interpretable attention mechanism to generate the forecasts. Our approach outperforms state-of-the-art methods on synthetic and real-world benchmarks under different missing data distributions, particularly in the presence of contiguous blocks of missing values.
- Abstract(参考訳): 空間におけるセンサポイントに関連付けられ、シリーズ間関係を特徴とする同期時系列の集合が与えられた場合、時空間予測の問題は各点の将来の観測を予測することからなる。
時空間グラフニューラルネットワークは、時系列間の関係をグラフとして表現することにより、顕著な結果を達成する。
それでも、既存のほとんどのメソッドは、入力が常に利用可能であり、データの一部が欠落しているときに隠された時空間的ダイナミクスを捕捉できないという、しばしば非現実的な仮定に依存している。
本研究では,階層的な時空間ダウンサンプリングによってこの問題に対処する。
入力時系列は時間と空間によって徐々に粗くなり、不均一な時間的・空間的ダイナミクスを捉える表現のプールが得られる。
観測と欠落したデータパターンに基づいて、このような表現を解釈可能な注意機構で組み合わせて予測を生成する。
提案手法は,異なるデータ分布,特に欠落した値の連続ブロックの存在下で,合成および実世界のベンチマークにおける最先端の手法よりも優れる。
関連論文リスト
- Relational Conformal Prediction for Correlated Time Series [56.59852921638328]
共形予測フレームワークと量子レグレッションに基づく分布自由な新しい手法を提案する。
グラフ深層学習演算子に基づく新しい共形予測手法を導入することにより,この空白を埋める。
我々のアプローチは、関連するベンチマークにおいて、正確なカバレッジを提供し、最先端の不確実性定量化をアーカイブする。
論文 参考訳(メタデータ) (2025-02-13T16:12:17Z) - Modelling Networked Dynamical System by Temporal Graph Neural ODE with Irregularly Partial Observed Time-series Data [6.207073888171358]
本稿では,グラフニューラルODEを信頼性と時間認識機構で埋め込んで動的に再構築する手法を提案する。
提案手法は,異なるネットワーク型力学系の実験において検証された。
論文 参考訳(メタデータ) (2024-11-29T14:10:16Z) - From Link Prediction to Forecasting: Addressing Challenges in Batch-based Temporal Graph Learning [0.716879432974126]
バッチ指向評価の適合性はデータセットの特性に依存することを示す。
連続時間時間グラフの場合、固定サイズのバッチは異なる期間の時間ウィンドウを生成し、不整合な動的リンク予測タスクをもたらす。
離散時間時間時間グラフの場合、バッチのシーケンスはデータに存在しない時間的依存関係を付加することができる。
論文 参考訳(メタデータ) (2024-06-07T12:45:12Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
本稿では、欠落したデータポイントを再構築するための効果的なモデル学習の課題に取り組む。
我々は,高度にスパースな観測値の集合を与えられた注意に基づくアーキテクチャのクラスを提案し,時間と空間における点の表現を学習する。
技術状況と比較して、我々のモデルは予測エラーを伝播したり、前方および後方の時間依存性をエンコードするために双方向モデルを必要とすることなくスパースデータを処理します。
論文 参考訳(メタデータ) (2022-05-26T16:40:48Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
近年、時間グラフモデリング問題として交通予測の定式化に焦点が移っている。
本稿では,道路網における交通予測の精度向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-25T08:45:14Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
我々は,多変量時系列の異なるチャネルにおける行方不明データを再構成することを目的としたGRILというグラフニューラルネットワークアーキテクチャを導入する。
予備的な結果は,本モデルが関連するベンチマーク上での計算処理において,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-31T17:47:10Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。