Modelling Networked Dynamical System by Temporal Graph Neural ODE with Irregularly Partial Observed Time-series Data
- URL: http://arxiv.org/abs/2412.00165v1
- Date: Fri, 29 Nov 2024 14:10:16 GMT
- Title: Modelling Networked Dynamical System by Temporal Graph Neural ODE with Irregularly Partial Observed Time-series Data
- Authors: Mengbang Zou, Weisi Guo,
- Abstract summary: We propose a method embedding Graph Neural ODE with reliability and time-aware mechanism to reconstruct the dynamics.
The proposed method has been validated in experiments of different networked dynamical systems.
- Score: 6.207073888171358
- License:
- Abstract: Modeling the evolution of system with time-series data is a challenging and critical task in a wide range of fields, especially when the time-series data is regularly sampled and partially observable. Some methods have been proposed to estimate the hidden dynamics between intervals like Neural ODE or Exponential decay dynamic function and combine with RNN to estimate the evolution. However, it is difficult for these methods to capture the spatial and temporal dependencies existing within graph-structured time-series data and take full advantage of the available relational information to impute missing data and predict the future states. Besides, traditional RNN-based methods leverage shared RNN cell to update the hidden state which does not capture the impact of various intervals and missing state information on the reliability of estimating the hidden state. To solve this problem, in this paper, we propose a method embedding Graph Neural ODE with reliability and time-aware mechanism which can capture the spatial and temporal dependencies in irregularly sampled and partially observable time-series data to reconstruct the dynamics. Also, a loss function is designed considering the reliability of the augment data from the above proposed method to make further prediction. The proposed method has been validated in experiments of different networked dynamical systems.
Related papers
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Neural Differential Recurrent Neural Network with Adaptive Time Steps [11.999568208578799]
We propose an RNN-based model, called RNN-ODE-Adap, that uses a neural ODE to represent the time development of the hidden states.
We adaptively select time steps based on the steepness of changes of the data over time so as to train the model more efficiently for the "spike-like" time series.
arXiv Detail & Related papers (2023-06-02T16:46:47Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
arXiv Detail & Related papers (2021-07-31T17:47:10Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - CARRNN: A Continuous Autoregressive Recurrent Neural Network for Deep
Representation Learning from Sporadic Temporal Data [1.8352113484137622]
In this paper, a novel deep learning-based model is developed for modeling multiple temporal features in sporadic data.
The proposed model, called CARRNN, uses a generalized discrete-time autoregressive model that is trainable end-to-end using neural networks modulated by time lags.
It is applied to multivariate time-series regression tasks using data provided for Alzheimer's disease progression modeling and intensive care unit (ICU) mortality rate prediction.
arXiv Detail & Related papers (2021-04-08T12:43:44Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.