Quantum dimer models with Rydberg gadgets
- URL: http://arxiv.org/abs/2402.10651v1
- Date: Fri, 16 Feb 2024 12:54:06 GMT
- Title: Quantum dimer models with Rydberg gadgets
- Authors: Zhongda Zeng, Giuliano Giudici, Hannes Pichler
- Abstract summary: Rydberg blockade mechanism is an important ingredient in quantum simulators based on neutral atom arrays.
We propose a method to transform the underlying Rydberg blockade into more general constraints.
We show that these states can be dynamically prepared with high fidelity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Rydberg blockade mechanism is an important ingredient in quantum
simulators based on neutral atom arrays. It enables the emergence of a rich
variety of quantum phases of matter, such as topological spin liquids. The
typically isotropic nature of the blockade effect, however, restricts the range
of natively accessible models and quantum states. In this work, we propose a
method to systematically overcome this limitation, by developing gadgets, i.e.,
specific arrangements of atoms, that transform the underlying Rydberg blockade
into more general constraints. We apply this technique to realize dimer models
on square and triangular geometries. In these setups, we study the role of the
quantum fluctuations induced by a coherent drive of the atoms and find
signatures of $U(1)$ and $\mathbb{Z}_2$ quantum spin liquid states in the
respective ground states. Finally, we show that these states can be dynamically
prepared with high fidelity, paving the way for the quantum simulation of a
broader class of constrained models and topological matter in experiments with
Rydberg atom arrays.
Related papers
- Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Emergent Gauge Theory in Rydberg Atom Arrays [0.0]
Rydberg atom arrays have emerged as a novel platform exhibiting rich quantum many-body physics.
The Rydberg blockade effect plays an essential role in establishing many-body correlations in this system.
arXiv Detail & Related papers (2024-01-15T14:23:57Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Trimer quantum spin liquid in a honeycomb array of Rydberg atoms [0.0]
We show the concrete realization of a fundamentally different class of spin liquids in a honeycomb array of Rydberg atoms.
In the regime where third-nearest-neighbor atoms lie within the Rydberg blockade, we find a novel ground state.
The fidelity of this trimer spin liquid state can be enhanced via dynamical preparation.
arXiv Detail & Related papers (2022-11-01T18:00:00Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Gauge-theoretic origin of Rydberg quantum spin liquids [0.0]
We introduce an exact relation between an Ising-Higgs lattice gauge theory on the kagome lattice and blockaded models on Ruby lattices.
This relation elucidates the origin of previously observed topological spin liquids by directly linking the latter to a deconfined phase of a solvable gauge theory.
arXiv Detail & Related papers (2022-05-25T18:19:26Z) - Triangular lattice quantum dimer model with variable dimer density [3.749673642775282]
We present large-scale quantum Monte Carlo simulation results on an extension of the triangular lattice quantum dimer model.
We find distinct odd and even $mathbbZ$ spin liquids, along with several phases with no topological order.
arXiv Detail & Related papers (2022-02-22T19:00:00Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.