論文の概要: Cultural Commonsense Knowledge for Intercultural Dialogues
- arxiv url: http://arxiv.org/abs/2402.10689v3
- Date: Tue, 23 Jul 2024 10:28:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 23:03:22.937758
- Title: Cultural Commonsense Knowledge for Intercultural Dialogues
- Title(参考訳): 異文化対話のための文化常識知識
- Authors: Tuan-Phong Nguyen, Simon Razniewski, Gerhard Weikum,
- Abstract要約: 本稿では,文化知識の高精度・高精度な主張を蒸留する方法であるMANGOについて述べる。
GPT-3.5でMANGO法を実行すると、30Kのコンセプトと11Kのカルチャーに対して167Kの高精度なアサーションが得られる。
MANGOから知識を追加することで、対話応答の全体的な品質、特異性、文化的感受性が向上することがわかった。
- 参考スコア(独自算出の注目度): 31.079990829088857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent progress, large language models (LLMs) still face the challenge of appropriately reacting to the intricacies of social and cultural conventions. This paper presents MANGO, a methodology for distilling high-accuracy, high-recall assertions of cultural knowledge. We judiciously and iteratively prompt LLMs for this purpose from two entry points, concepts and cultures. Outputs are consolidated via clustering and generative summarization. Running the MANGO method with GPT-3.5 as underlying LLM yields 167K high-accuracy assertions for 30K concepts and 11K cultures, surpassing prior resources by a large margin in quality and size. In an extrinsic evaluation for intercultural dialogues, we explore augmenting dialogue systems with cultural knowledge assertions. Notably, despite LLMs inherently possessing cultural knowledge, we find that adding knowledge from MANGO improves the overall quality, specificity, and cultural sensitivity of dialogue responses, as judged by human annotators. Data and code are available for download.
- Abstract(参考訳): 近年の進歩にもかかわらず、大きな言語モデル(LLM)は、社会的・文化的慣習の複雑さに適切に対応するという課題に直面している。
本稿では,文化知識の高精度・高精度な主張を蒸留する方法であるMANGOについて述べる。
我々はこの目的のために,2つの視点,概念と文化から LLM を円滑かつ反復的に促す。
アウトプットはクラスタリングと生成的要約を通じて統合される。
GPT-3.5 を基礎となる LLM として MANGO メソッドを実行すると,30K の概念と 11K 文化に対して 167K の高精度なアサーションが得られる。
異文化間対話の非本質的な評価において,文化知識を付加した対話システムについて検討する。
特に,LLMが本質的に文化的知識を持っているにもかかわらず,MANGOからの知識を付加することで,人間のアノテータが判断するような,対話応答の全体的な品質,特異性,文化的感受性が向上することがわかった。
データとコードはダウンロード可能だ。
関連論文リスト
- Translating Across Cultures: LLMs for Intralingual Cultural Adaptation [12.5954253354303]
文化適応の課題を定義し,この課題に対する様々なモデルをベンチマークする評価フレームワークを作成する。
文化的バイアスやステレオタイプを含む自動適応の可能性について分析する。
論文 参考訳(メタデータ) (2024-06-20T17:06:58Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [68.37589899302161]
110か国・地域での3つのSOTAモデルの文化認識を,文化条件付き世代を通して8つの文化関連トピックについて明らかにした。
文化条件付き世代は、デフォルトの文化と区別される余分な文化を区別する言語的な「マーカー」から成り立っていることが判明した。
論文 参考訳(メタデータ) (2024-04-16T00:50:43Z) - CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge [69.82940934994333]
我々は、人間とAIのコラボレーションを活用して、挑戦的な評価データセットを構築するインタラクティブなレッドチームシステムであるCulturalTeamingを紹介する。
我々の研究は、CulturalTeamingの様々なAI支援モードが、文化的な質問の作成においてアノテータを支援することを明らかにした。
CULTURALBENCH-V0.1は、ユーザのリピートの試みにより、コンパクトだが高品質な評価データセットである。
論文 参考訳(メタデータ) (2024-04-10T00:25:09Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Bridging Cultural Nuances in Dialogue Agents through Cultural Value
Surveys [20.82269206759988]
cuDialogは、文化レンズを使った対話生成のための第一級ベンチマークである。
対話交換から文化的属性を抽出できるベースラインモデルを開発した。
本稿では,対話型エンコーディング機能に文化的次元を組み込むことを提案する。
論文 参考訳(メタデータ) (2024-01-18T19:42:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。