論文の概要: From Risk to Uncertainty: Generating Predictive Uncertainty Measures via Bayesian Estimation
- arxiv url: http://arxiv.org/abs/2402.10727v3
- Date: Mon, 17 Feb 2025 07:31:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:06:20.875118
- Title: From Risk to Uncertainty: Generating Predictive Uncertainty Measures via Bayesian Estimation
- Title(参考訳): リスクから不確実性:ベイズ推定による予測不確実性対策の生成
- Authors: Nikita Kotelevskii, Vladimir Kondratyev, Martin Takáč, Éric Moulines, Maxim Panov,
- Abstract要約: 私たちは、異なる予測の不確実性対策を作成できるフレームワークを構築します。
本手法は,分布外および誤分類インスタンスの検出において,その性能を評価することにより,画像データセット上での検証を行う。
- 参考スコア(独自算出の注目度): 5.355925496689674
- License:
- Abstract: There are various measures of predictive uncertainty in the literature, but their relationships to each other remain unclear. This paper uses a decomposition of statistical pointwise risk into components, associated with different sources of predictive uncertainty, namely aleatoric uncertainty (inherent data variability) and epistemic uncertainty (model-related uncertainty). Together with Bayesian methods, applied as an approximation, we build a framework that allows one to generate different predictive uncertainty measures. We validate our method on image datasets by evaluating its performance in detecting out-of-distribution and misclassified instances using the AUROC metric. The experimental results confirm that the measures derived from our framework are useful for the considered downstream tasks.
- Abstract(参考訳): 文献には様々な予測の不確実性の尺度があるが、両者の関係はいまだに不明である。
本稿では,予測不確実性の異なる要因,すなわちアレータ性不確実性(連続データ変動)とてんかん性不確実性(モデル関連不確実性)とを関連付けて,統計的ポイントワイズリスクを分解する。
近似として応用されたベイズ法とともに、異なる予測不確実性尺度を生成できる枠組みを構築した。
我々は,AUROC測定値を用いて,分布外および分類誤検出の性能を評価することにより,画像データセット上での手法の有効性を検証する。
実験結果から,提案手法は下流作業に有用であることが確認された。
関連論文リスト
- Data-driven decision-making under uncertainty with entropic risk measure [5.407319151576265]
エントロピーリスク尺度は、不確実な損失に関連する尾のリスクを考慮に入れた高い意思決定に広く用いられている。
経験的エントロピーリスク推定器を劣化させるため, 強く一貫したブートストラップ手法を提案する。
検証性能のバイアスが補正されない場合,クロスバリデーション手法は,保険業者のアウト・オブ・サンプルリスクを著しく高める可能性があることを示す。
論文 参考訳(メタデータ) (2024-09-30T04:02:52Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - A unified uncertainty-aware exploration: Combining epistemic and
aleatory uncertainty [21.139502047972684]
そこで本稿では, リスク感応探索における浮腫性およびてんかん性不確実性の複合効果を定量的に評価するアルゴリズムを提案する。
本手法は,パラメータ化された回帰分布を推定する分布RLの新たな拡張の上に構築する。
探索課題とリスク課題を伴う課題に対する実験結果から,本手法が代替手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-01-05T17:39:00Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Detecting and Mitigating Test-time Failure Risks via Model-agnostic
Uncertainty Learning [30.86992077157326]
本稿では,すでに訓練済みのブラックボックス分類モデルの失敗リスクと予測的不確かさを推定するための,ポストホックメタラーナーであるリスクアドバイザを紹介する。
リスクアドバイザは、リスクスコアの提供に加えて、不確実性見積を、アレタリックおよびエピステマティックな不確実性コンポーネントに分解する。
ブラックボックス分類モデルおよび実世界および合成データセットのさまざまなファミリーの実験は、リスクアドバイザーがデプロイメント時の障害リスクを確実に予測していることを示している。
論文 参考訳(メタデータ) (2021-09-09T17:23:31Z) - Adversarial Attack for Uncertainty Estimation: Identifying Critical
Regions in Neural Networks [0.0]
本稿では,ニューラルネットワークにおける決定境界付近のデータポイントをキャプチャする手法を提案する。
不確実性推定は、モデルのパラメータに摂動を与える以前の研究とは異なり、入力摂動から導かれる。
提案手法は,他の手法よりも優れた性能を示し,機械学習におけるモデル不確実性を捉えるリスクが低いことを示した。
論文 参考訳(メタデータ) (2021-07-15T21:30:26Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - The Aleatoric Uncertainty Estimation Using a Separate Formulation with
Virtual Residuals [51.71066839337174]
既存の手法では、ターゲット推定における誤差を定量化できるが、過小評価する傾向がある。
本稿では,信号とその不確かさを推定するための新たな分離可能な定式化を提案し,オーバーフィッティングの影響を回避した。
提案手法は信号および不確実性推定のための最先端技術より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-03T12:11:27Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。