論文の概要: Assessing the Reasoning Capabilities of LLMs in the context of Evidence-based Claim Verification
- arxiv url: http://arxiv.org/abs/2402.10735v3
- Date: Wed, 19 Feb 2025 21:11:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:25:41.020164
- Title: Assessing the Reasoning Capabilities of LLMs in the context of Evidence-based Claim Verification
- Title(参考訳): 証拠に基づくクレーム検証におけるLCMの推論能力の評価
- Authors: John Dougrez-Lewis, Mahmud Elahi Akhter, Federico Ruggeri, Sebastian Löbbers, Yulan He, Maria Liakata,
- Abstract要約: 証拠と組み合わせた主張を原子推論タイプに分解するフレームワークを提案する。
私たちはこのフレームワークを使って、最初のクレーム検証ベンチマークであるRECV(Reasoning in Evidence-based Claim Verification)を作成します。
我々は、複数のプロンプト設定の下で、最先端のLLMを3つ評価する。
- 参考スコア(独自算出の注目度): 22.92500697622486
- License:
- Abstract: Although LLMs have shown great performance on Mathematics and Coding related reasoning tasks, the reasoning capabilities of LLMs regarding other forms of reasoning are still an open problem. Here, we examine the issue of reasoning from the perspective of claim verification. We propose a framework designed to break down any claim paired with evidence into atomic reasoning types that are necessary for verification. We use this framework to create Reasoning in Evidence-based Claim Verification (RECV), the first claim verification benchmark, incorporating real-world claims, to assess the deductive and abductive reasoning capabilities of LLMs. The benchmark comprises of three datasets, covering reasoning problems of increasing complexity. We evaluate three state-of-the-art proprietary LLMs under multiple prompt settings. Our results show that while LLMs can address deductive reasoning problems, they consistently fail in cases of abductive reasoning. Moreover, we observe that enhancing LLMs with rationale generation is not always beneficial. Nonetheless, we find that generated rationales are semantically similar to those provided by humans, especially in deductive reasoning cases.
- Abstract(参考訳): LLMは数学およびコーディングに関連する推論タスクにおいて優れた性能を示したが、他の推論形式に関するLCMの推論能力は依然として未解決の問題である。
本稿では,クレーム検証の観点から推論の問題を検討する。
本稿では,証拠と組み合わせたクレームを,検証に必要な原子推論タイプに分解するフレームワークを提案する。
実世界の主張を取り入れた最初のクレーム検証ベンチマークであるReasoning in Evidence-based Claim Verification (RECV) を用いて, LLMの帰納的推論能力と帰納的推論能力を評価する。
ベンチマークは3つのデータセットで構成され、複雑さを増大させる理由をカバーしている。
我々は、複数のプロンプト設定の下で、最先端のLLMを3つ評価する。
以上の結果から, LLMは帰納的推論問題に対処できるが, 帰納的推論の場合は常に失敗することがわかった。
さらに、合理的な生成によるLLMの強化が必ずしも有益であるとは限らないことを観察する。
それにもかかわらず、生成された有理性は人間によって提供されるものと意味的に類似している。
関連論文リスト
- Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language Model (LLM) は論理的および数学的推論を行う際にも苦戦している。
本稿では、議論論に関する文献からの批判的質問の概念を利用し、特にトゥールミンの議論モデルに焦点を当てる。
これらの重要な質問を取り入れることで,LLMの推論能力が向上することを示す。
論文 参考訳(メタデータ) (2024-12-19T18:51:30Z) - MIRAGE: Evaluating and Explaining Inductive Reasoning Process in Language Models [19.81485079689837]
帰納的および帰納的段階における大規模言語モデルの能力を評価する。
モデルが正しい帰納的規則を使わずに常に正しい推論を行う傾向があることが分かる。
帰納的推論プロセスでは、モデルは機能空間における現在のテスト例に近い観察された事実に焦点を当てる傾向があります。
論文 参考訳(メタデータ) (2024-10-12T14:12:36Z) - Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs [99.76347807139615]
推論には2つの典型型がある: 帰納的推論(deductive reasoning)と帰納的推論(inductive reasoning)。
大規模言語モデル(LLM)の推論能力に関する広範な研究にもかかわらず、ほとんどの研究は帰納的推論と帰納的推論を厳密に区別することができなかった。
LLM推論では、帰納的または帰納的推論という、より大きな課題を引き起こします。
論文 参考訳(メタデータ) (2024-07-31T18:47:11Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
LLMの複雑な推論には2行のアプローチが採用されている。
1行の作業は様々な推論構造を持つLLMを誘導し、構造出力は自然に中間推論ステップと見なすことができる。
他方の行では、LCMのない宣言的解法を用いて推論処理を行い、推論精度は向上するが、解法のブラックボックスの性質により解釈性に欠ける。
具体的には,Prologインタプリタが生成した中間検索ログにアクセスし,人間可読推論に解釈可能であることを示す。
論文 参考訳(メタデータ) (2023-11-16T11:26:21Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Assessing Step-by-Step Reasoning against Lexical Negation: A Case Study
on Syllogism [19.590120229602103]
大規模言語モデル(LLM)は、ステップバイステップの推論命令、例えばチェーン・オブ・シント(CoT)プロンプトを利用する。
本研究では, 否定に着目したLCMのステップバイステップ推論能力について検討する。
論文 参考訳(メタデータ) (2023-10-23T12:40:41Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。