論文の概要: Let's Learn Step by Step: Enhancing In-Context Learning Ability with
Curriculum Learning
- arxiv url: http://arxiv.org/abs/2402.10738v1
- Date: Fri, 16 Feb 2024 14:55:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 15:36:34.691460
- Title: Let's Learn Step by Step: Enhancing In-Context Learning Ability with
Curriculum Learning
- Title(参考訳): 段階的に学習しよう:カリキュラム学習による文脈内学習能力の向上
- Authors: Yinpeng Liu and Jiawei Liu and Xiang Shi and Qikai Cheng and Wei Lu
- Abstract要約: デモオーダリングは,大規模言語モデル(LLM)の性能に大きく影響する。
我々は,ICLの簡易かつ効果的な実演順序付け手法であるICCLを提唱する。
- 参考スコア(独自算出の注目度): 10.053004550486214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Demonstration ordering, which is an important strategy for in-context
learning (ICL), can significantly affects the performance of large language
models (LLMs). However, most of the current approaches of ordering require
additional knowledge and similarity calculation. We advocate the few-shot
in-context curriculum learning (ICCL), a simple but effective demonstration
ordering method for ICL, which implies gradually increasing the complexity of
prompt demonstrations during the inference process. Then we design three
experiments to discuss the effectiveness of ICCL, the formation mechanism of
LLM's ICCL capability, and the impact of ordering subjects. Experimental
results demonstrate that ICCL, developed during the instruction-tuning stage,
is effective for open-source LLMs. Moreover, LLMs exhibit a weaker capacity
compared to humans in discerning the difficulty levels of demonstrations. We
release our code at https://github.com/61peng/curri_learning.
- Abstract(参考訳): In-context Learning(ICL)の重要な戦略であるDemonstration Orderingは,大規模言語モデル(LLM)の性能に大きな影響を与える可能性がある。
しかし、現在の注文のアプローチのほとんどは、追加の知識と類似性計算を必要とする。
我々は、ICLの簡易かつ効果的な実演順序付け手法であるICCL(英語版)を提唱し、推論過程における素早い実演の複雑さを徐々に増大させることを示唆した。
次に, icclの有効性, llmのiccl能力形成機構, 発注課題の影響を考察するために, 3つの実験をデザインした。
インストラクションチューニング段階で開発されたICCLは,オープンソースLLMに有効であることを示す実験結果を得た。
さらに、LLMは、デモンストレーションの難易度を識別する上で、人間よりも弱い能力を示す。
コードはhttps://github.com/61peng/curri_learningでリリースします。
関連論文リスト
- Multimodal Contrastive In-Context Learning [0.9120312014267044]
本稿では,Large Language Models (LLMs) における勾配なしインコンテキスト学習 (ICL) の理解を高めるために,新しいマルチモーダルコントラスト型インコンテキスト学習フレームワークを提案する。
まず、実世界におけるICLの対照的な解釈を示し、ICLの差別化要因としてキー値表現の距離を示す。
第2に、実世界のデータセットに対するマルチモーダル入力フォーマットにおけるバイアスに対処する分析フレームワークを開発する。
第3に、ヘイトフルミームの検出の有効性を示すICLのオンザフライアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-23T10:10:01Z) - ICLEval: Evaluating In-Context Learning Ability of Large Language Models [68.7494310749199]
In-Context Learning (ICL) は大規模言語モデル(LLM)の重要な能力であり、相互接続された入力の理解と推論を可能にする。
既存の評価フレームワークは主に言語能力と知識に重点を置いており、しばしばICL能力の評価を見落としている。
LLMのICL能力を評価するためにICLEvalベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-21T08:06:10Z) - Investigating the Pre-Training Dynamics of In-Context Learning: Task Recognition vs. Task Learning [99.05401042153214]
In-context Learning(ICL)は、タスク認識(TR)とタスク学習(TL)の2つの主要な能力に起因する可能性がある。
ICLの出現の事前学習のダイナミクスを調べることで、第一歩を踏み出す。
そこで本研究では,この2つの機能を推論時によりよく統合するための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T06:37:47Z) - DEEP-ICL: Definition-Enriched Experts for Language Model In-Context Learning [37.22553531518853]
大規模言語モデル(LLM)におけるパラメータの多さは、コンテキスト内学習(ICL)の能力を促進すると長い間考えられてきた。
ICL のための新しいタスク定義拡張 ExPert Ensembling Method である DEEP-ICL を紹介する。
ICLの改善はモデルのサイズに直接依存するのではなく、基本的にはタスク定義やタスク誘導学習の理解に起因している、と我々は主張する。
論文 参考訳(メタデータ) (2024-03-07T05:26:41Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context Learning (ICL)は、新しいタスクに適応する革新的な能力として認識されている。
本論文は、ICLのデータ中毒に対する感受性の重大な問題について述べる。
ICLの学習メカニズムを活用するために考案された特殊攻撃フレームワークであるICLPoisonを紹介する。
論文 参考訳(メタデータ) (2024-02-03T14:20:20Z) - When does In-context Learning Fall Short and Why? A Study on
Specification-Heavy Tasks [54.71034943526973]
In-context Learning (ICL)は、大規模言語モデル(LLM)のデフォルトメソッドとなっている。
ICLは、複雑で広範囲なタスク仕様を持つタスクである、仕様の重いタスクを処理できないことが分かりました。
我々は、コンテキストを具体的に理解できないこと、タスクスキーマが人間と理解できないこと、長文理解が不十分であること、の3つの主な理由を識別する。
論文 参考訳(メタデータ) (2023-11-15T14:26:30Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - A Survey on In-context Learning [77.78614055956365]
In-context Learning (ICL) は自然言語処理(NLP)の新しいパラダイムとして登場した。
まず、ICLの形式的定義を示し、関連する研究との相関を明らかにする。
次に、トレーニング戦略、迅速なデザイン戦略、関連する分析を含む高度なテクニックを組織化し、議論する。
論文 参考訳(メタデータ) (2022-12-31T15:57:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。