論文の概要: DEEP-ICL: Definition-Enriched Experts for Language Model In-Context Learning
- arxiv url: http://arxiv.org/abs/2403.04233v2
- Date: Sun, 16 Jun 2024 06:44:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 05:27:06.230746
- Title: DEEP-ICL: Definition-Enriched Experts for Language Model In-Context Learning
- Title(参考訳): DEEP-ICL:言語モデルインコンテキスト学習のための定義豊富なエキスパート
- Authors: Xingwei Qu, Yiming Liang, Yucheng Wang, Tianyu Zheng, Tommy Yue, Lei Ma, Stephen W. Huang, Jiajun Zhang, Yinan Shi, Chenghua Lin, Jie Fu, Ge Zhang,
- Abstract要約: 大規模言語モデル(LLM)におけるパラメータの多さは、コンテキスト内学習(ICL)の能力を促進すると長い間考えられてきた。
ICL のための新しいタスク定義拡張 ExPert Ensembling Method である DEEP-ICL を紹介する。
ICLの改善はモデルのサイズに直接依存するのではなく、基本的にはタスク定義やタスク誘導学習の理解に起因している、と我々は主張する。
- 参考スコア(独自算出の注目度): 37.22553531518853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has long been assumed that the sheer number of parameters in large language models (LLMs) drives in-context learning (ICL) capabilities, enabling remarkable performance improvements by leveraging task-specific demonstrations. Challenging this hypothesis, we introduce DEEP-ICL, a novel task Definition Enriched ExPert Ensembling methodology for ICL. DEEP-ICL explicitly extracts task definitions from given demonstrations and generates responses through learning task-specific examples. We argue that improvement from ICL does not directly rely on model size, but essentially stems from understanding task definitions and task-guided learning. Inspired by this, DEEP-ICL combines two 3B models with distinct roles (one for concluding task definitions and the other for learning task demonstrations) and achieves comparable performance to LLaMA2-13B. Furthermore, our framework outperforms conventional ICL by overcoming pretraining sequence length limitations, by supporting unlimited demonstrations. We contend that DEEP-ICL presents a novel alternative for achieving efficient few-shot learning, extending beyond the conventional ICL.
- Abstract(参考訳): 大規模言語モデル(LLM)のパラメータ数が多ければ多いほど、コンテキスト内学習(ICL)の能力が向上し、タスク固有のデモンストレーションを活用することで、大幅なパフォーマンス向上が期待できる。
ICLのための新しいタスク定義拡張ExPert Ensembling法であるDEEP-ICLを導入する。
DEEP-ICLは与えられたデモからタスク定義を明示的に抽出し、タスク固有の例を学習することで応答を生成する。
ICLの改善はモデルのサイズに直接依存するのではなく、基本的にはタスク定義やタスク誘導学習の理解に起因している、と我々は主張する。
これに触発されて、DEEP-ICLは2つの3Bモデルと異なる役割(ひとつはタスク定義をまとめ、もう一つはタスクのデモを学習する)を組み合わせ、LLaMA2-13Bに匹敵するパフォーマンスを達成する。
さらに,本フレームワークは,列長制限を克服し,無制限な実演をサポートすることにより,従来のICLよりも優れた性能を発揮する。
我々は,DEEP-ICLが従来のICLを超越した,効率的な数ショット学習を実現するための新しい代替手段であると主張している。
関連論文リスト
- Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - InsTALL: Context-aware Instructional Task Assistance with Multi-modal Large Language Models [11.913271486031201]
マルチモーダルな大規模言語モデル(InsTALL)を用いたコンテキスト認識型インストラクショナル・タスク・アシスタントを開発した。
InsTALLは、そのタスクに関連するユーザクエリに対して、リアルタイムで応答する。
InsTALLはマルチモーダルアクティビティ理解のためのサブタスクを提案する。
論文 参考訳(メタデータ) (2025-01-21T15:55:06Z) - UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model [11.885204227946549]
統一表現を用いて様々なタスクを表現するために設計された包括的モデルを提案する。
本モデルは,ユーザ指示の暗黙的な意図を理解する上で,強力な能力を示す。
私たちのアプローチは、例外的なスケーラビリティと汎用性を示します。
論文 参考訳(メタデータ) (2024-08-05T14:27:39Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) は、異なるモデルに転送可能な視覚的プロンプトを生成するためのシンプルで効果的なアプローチである。
本稿では,既存の視覚的プロンプト手法のクロスモデル特徴劣化問題に対処し,学習したプロンプトの伝達可能性を高めるための2つの戦略を提案する。
論文 参考訳(メタデータ) (2024-04-17T09:39:07Z) - Towards Unified Task Embeddings Across Multiple Models: Bridging the Gap for Prompt-Based Large Language Models and Beyond [16.913115978881866]
本稿では,単一ベクトル空間内において,より小さな言語モデルや多様なプロンプトを持つ大規模言語モデルを含む,様々なモデルからのタスク埋め込みである統合タスク埋め込み(FUTE)フレームワークを提案する。
このような一様性は、異なるモデル間の類似性の比較と分析を可能にし、マルチモデルシナリオにおける既存のタスク埋め込みメソッドの範囲と有用性を広げる。
論文 参考訳(メタデータ) (2024-02-22T13:13:31Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - Multitask Multimodal Prompted Training for Interactive Embodied Task
Completion [48.69347134411864]
Embodied MultiModal Agent (EMMA) はエンコーダとデコーダの統一モデルである。
すべてのタスクをテキスト生成として統一することで、EMMAはタスク間の転送を容易にするアクション言語を学ぶ。
論文 参考訳(メタデータ) (2023-11-07T15:27:52Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
インストラクションチューニング(IT)は,大規模言語モデル(LLM)を命令付き多種多様なタスクで訓練することにより,印象的なゼロショット一般化を実現する。
ITモデルの性能と一般化性を改善するために、新しいタスクをどのように選択するかは、未解決の問題である。
本稿では,情報的タスクを識別する新しいフレームワークである即時不確実性に基づくアクティブな指導チューニングを提案し,選択したタスク上でモデルをアクティブにチューニングする。
論文 参考訳(メタデータ) (2023-11-01T04:40:05Z) - Did You Read the Instructions? Rethinking the Effectiveness of Task
Definitions in Instruction Learning [74.70157466822612]
教科学習におけるタスク定義の役割を体系的に研究する。
タスク出力を記述する内容を削除すると,モデルの性能が大幅に低下することがわかった。
本稿では,モデルのタスク命令の活用を支援するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2023-06-01T21:11:24Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
本稿では,タスク固有の命令でPLMを利用する包括的インストラクション(CINS)を提案する。
命令のスキーマ(定義、制約、プロンプト)と、ToDの3つの重要な下流タスクに対するカスタマイズされた実現を設計する。
これらのToDタスクに対して,小さな検証データを用いた現実的な数ショット学習シナリオで実験を行った。
論文 参考訳(メタデータ) (2021-09-10T03:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。