A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers
- URL: http://arxiv.org/abs/2402.10748v2
- Date: Fri, 21 Jun 2024 15:55:13 GMT
- Title: A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers
- Authors: Paola Busia, Matteo Antonio Scrugli, Victor Jean-Baptiste Jung, Luca Benini, Paolo Meloni,
- Abstract summary: A promising approach for real-time analysis of the electrocardiographic (ECG) signal and the detection of heart conditions, such as arrhythmia, is represented by the transformer machine learning model.
We present a tiny transformer model for the analysis of the ECG signal, requiring only 6k parameters and reaching 98.97% accuracy in the recognition of the 5 most common arrhythmia classes from the MIT-BIH Arrhythmia database.
- Score: 10.203375838335935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wearable systems for the continuous and real-time monitoring of cardiovascular diseases are becoming widespread and valuable assets in diagnosis and therapy. A promising approach for real-time analysis of the electrocardiographic (ECG) signal and the detection of heart conditions, such as arrhythmia, is represented by the transformer machine learning model. Transformers are powerful models for the classification of time series, although efficient implementation in the wearable domain raises significant design challenges, to combine adequate accuracy and a suitable complexity. In this work, we present a tiny transformer model for the analysis of the ECG signal, requiring only 6k parameters and reaching 98.97% accuracy in the recognition of the 5 most common arrhythmia classes from the MIT-BIH Arrhythmia database, assessed considering 8-bit integer inference as required for efficient execution on low-power microcontroller-based devices. We explored an augmentation-based training approach for improving the robustness against electrode motion artifacts noise, resulting in a worst-case post-deployment performance assessment of 98.36% accuracy. Suitability for wearable monitoring solutions is finally demonstrated through efficient deployment on the parallel ultra-low-power GAP9 processor, where inference execution requires 4.28ms and 0.09mJ.
Related papers
- AI-Powered Dynamic Fault Detection and Performance Assessment in Photovoltaic Systems [44.99833362998488]
intermittent nature of photovoltaic (PV) solar energy leads to power losses of 10-70% and an average energy production decrease of 25%.
Current fault detection strategies are costly and often yield unreliable results due to complex data signal profiles.
This research presents a computational model using the PVlib library in Python, incorporating a dynamic loss quantification algorithm.
arXiv Detail & Related papers (2024-08-19T23:52:06Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications [2.0999222360659604]
We demonstrate improved performance for ECG classification using hybrid features and three different models.
An RR interval features based model proposed in this work achieved an accuracy of 98.98%, which is an improvement over the baseline model.
Another model combining the frequency features and the RR interval features was developed, which achieved a high accuracy of 99% with good sustained performance in noisy environments.
arXiv Detail & Related papers (2022-06-14T12:14:40Z) - Energy-Efficient Tree-Based EEG Artifact Detection [17.085570466000906]
In epilepsy monitoring, EEG artifacts are often mistaken for seizures due to their morphological similarity in both amplitude and frequency.
In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform.
arXiv Detail & Related papers (2022-04-19T12:57:26Z) - Bioformers: Embedding Transformers for Ultra-Low Power sEMG-based
Gesture Recognition [21.486555297061717]
Human-machine interaction is gaining traction in rehabilitation tasks, such as controlling prosthetic hands or robotic arms.
Gesture recognition exploiting surface electromyographic (sEMG) signals is one of the most promising approaches.
However, the analysis of these signals still presents many challenges since similar gestures result in similar muscle contractions.
arXiv Detail & Related papers (2022-03-24T08:37:26Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - DeepBeat: A multi-task deep learning approach to assess signal quality
and arrhythmia detection in wearable devices [0.0]
We develop a multi-task deep learning method to assess signal quality and arrhythmia event detection in wearable photoplethysmography devices for real-time detection of atrial fibrillation (AF)
We train our algorithm on over one million simulated unlabeled physiological signals and fine-tune on a curated dataset of over 500K labeled signals from over 100 individuals from 3 different wearable devices.
We show that two-stage training can help address the unbalanced data problem common to biomedical applications where large well-annotated datasets are scarce.
arXiv Detail & Related papers (2020-01-01T07:41:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.