論文の概要: ToolSword: Unveiling Safety Issues of Large Language Models in Tool Learning Across Three Stages
- arxiv url: http://arxiv.org/abs/2402.10753v2
- Date: Fri, 16 Aug 2024 04:12:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 20:45:34.192714
- Title: ToolSword: Unveiling Safety Issues of Large Language Models in Tool Learning Across Three Stages
- Title(参考訳): ToolSword:3段階にわたるツール学習における大規模言語モデルの安全性問題
- Authors: Junjie Ye, Sixian Li, Guanyu Li, Caishuang Huang, Songyang Gao, Yilong Wu, Qi Zhang, Tao Gui, Xuanjing Huang,
- Abstract要約: ツール学習は,現実のシナリオにおいて,基本的なアプローチあるいは大規模言語モデル(LLM)のデプロイとして広く認識されている。
このギャップを埋めるために、ツール学習においてLLMに関連する安全性問題を調べるための包括的なフレームワークである*ToolSword*を紹介します。
- 参考スコア(独自算出の注目度): 45.16862486631841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tool learning is widely acknowledged as a foundational approach or deploying large language models (LLMs) in real-world scenarios. While current research primarily emphasizes leveraging tools to augment LLMs, it frequently neglects emerging safety considerations tied to their application. To fill this gap, we present *ToolSword*, a comprehensive framework dedicated to meticulously investigating safety issues linked to LLMs in tool learning. Specifically, ToolSword delineates six safety scenarios for LLMs in tool learning, encompassing **malicious queries** and **jailbreak attacks** in the input stage, **noisy misdirection** and **risky cues** in the execution stage, and **harmful feedback** and **error conflicts** in the output stage. Experiments conducted on 11 open-source and closed-source LLMs reveal enduring safety challenges in tool learning, such as handling harmful queries, employing risky tools, and delivering detrimental feedback, which even GPT-4 is susceptible to. Moreover, we conduct further studies with the aim of fostering research on tool learning safety. The data is released in https://github.com/Junjie-Ye/ToolSword.
- Abstract(参考訳): ツール学習は,現実のシナリオにおいて,基本的なアプローチあるいは大規模言語モデル(LLM)のデプロイとして広く認識されている。
現在の研究は、主にLDMの強化にツールを活用することを強調するが、アプリケーションに結びついている新たな安全性の考慮は無視されることが多い。
このギャップを埋めるために、ツール学習におけるLLMに関連する安全性問題を慎重に調査する包括的フレームワーク*ToolSword*を紹介します。
具体的には、ツール学習におけるLLMの安全性シナリオとして、入力ステージにおける**malicious query*と**jailbreak attack*と、実行ステージにおける**noisy misdirection*と**risky cues*と、出力ステージにおける**harmful feedback*と**error conflicts*の6つを挙げている。
11のオープンソースおよびクローズドソース LLM で実施された実験では、有害なクエリの処理、リスクの高いツールの使用、GPT-4 さえも影響を受けやすい有害なフィードバックの提供など、ツール学習における永続的な安全性上の課題が明らかにされている。
さらに,ツール学習の安全性に関する研究を促進することを目的として,さらなる研究を行っている。
データはhttps://github.com/Junjie-Ye/ToolSwordで公開されている。
関連論文リスト
- Learning to Ask: When LLMs Meet Unclear Instruction [49.256630152684764]
大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:06:12Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - Harnessing Large Language Models for Software Vulnerability Detection: A Comprehensive Benchmarking Study [1.03590082373586]
ソースコードの脆弱性発見を支援するために,大規模言語モデル(LLM)を提案する。
目的は、複数の最先端のLCMをテストし、最も優れたプロンプト戦略を特定することである。
LLMは従来の静的解析ツールよりも多くの問題を特定でき、リコールやF1スコアの点で従来のツールよりも優れています。
論文 参考訳(メタデータ) (2024-05-24T14:59:19Z) - LLMs in the Imaginarium: Tool Learning through Simulated Trial and Error [54.954211216847135]
既存の大規模言語モデル(LLM)は30%から60%の範囲でしか正当性に至らない。
試行錯誤(STE)を模擬したツール拡張LDMの生物学的なインスピレーション法を提案する。
STEは、試行錯誤、想像力、記憶という、生物学的システムにおけるツール使用行動の成功のための3つの重要なメカニズムを編成する。
論文 参考訳(メタデータ) (2024-03-07T18:50:51Z) - Efficient Tool Use with Chain-of-Abstraction Reasoning [65.18096363216574]
大規模言語モデル(LLM)は、現実世界の知識に対する推論の基礎となる必要がある。
マルチステップ推論問題におけるツールの実行には,微調整LDMエージェントの課題が残されている。
マルチステップ推論におけるツールの活用方法として, LLM の新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-30T21:53:30Z) - ToolEyes: Fine-Grained Evaluation for Tool Learning Capabilities of
Large Language Models in Real-world Scenarios [48.38419686697733]
本稿では,大規模言語モデルのツール学習能力を評価するためのシステムであるToolEyesを提案する。
このシステムは7つの現実シナリオを慎重に分析し、ツール学習においてLLMに不可欠な5次元を解析する。
ToolEyesには,約600のツールを備えたツールライブラリが組み込まれている。
論文 参考訳(メタデータ) (2024-01-01T12:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。