論文の概要: When Dataflow Analysis Meets Large Language Models
- arxiv url: http://arxiv.org/abs/2402.10754v1
- Date: Fri, 16 Feb 2024 15:21:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 15:42:08.649556
- Title: When Dataflow Analysis Meets Large Language Models
- Title(参考訳): Dataflow Analysisが大規模言語モデルに出会ったとき
- Authors: Chengpeng Wang, Wuqi Zhang, Zian Su, Xiangzhe Xu, Xiaoheng Xie,
Xiangyu Zhang
- Abstract要約: 本稿では,LLMDFAについて述べる。LLMDFAはLLLMを利用したデータフロー解析フレームワークで,コンパイルインフラを必要とせずに任意のコードスニペットを解析する。
LLMDFAは、要約に基づくデータフロー分析にヒントを得て、問題を3つのサブプロブレムに分解し、いくつかの重要な戦略によって効果的に解決する。
評価の結果,本設計は幻覚を緩和し,推論能力を向上し,データフロー関連バグの検出において高い精度とリコールが得られることがわかった。
- 参考スコア(独自算出の注目度): 9.458251511218817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dataflow analysis is a powerful code analysis technique that reasons
dependencies between program values, offering support for code optimization,
program comprehension, and bug detection. Existing approaches require the
successful compilation of the subject program and customizations for downstream
applications. This paper introduces LLMDFA, an LLM-powered dataflow analysis
framework that analyzes arbitrary code snippets without requiring a compilation
infrastructure and automatically synthesizes downstream applications. Inspired
by summary-based dataflow analysis, LLMDFA decomposes the problem into three
sub-problems, which are effectively resolved by several essential strategies,
including few-shot chain-of-thought prompting and tool synthesis. Our
evaluation has shown that the design can mitigate the hallucination and improve
the reasoning ability, obtaining high precision and recall in detecting
dataflow-related bugs upon benchmark programs, outperforming state-of-the-art
(classic) tools, including a very recent industrial analyzer.
- Abstract(参考訳): データフロー分析は、プログラム値間の依存関係を推論し、コード最適化、プログラム理解、バグ検出をサポートする強力なコード解析技術である。
既存のアプローチでは、サブジェクトプログラムのコンパイルとダウンストリームアプリケーションのカスタマイズを成功させる必要がある。
本稿では,コンパイルインフラストラクチャを必要とせず任意のコードスニペットを解析し,下流アプリケーションを自動的に合成する,llmを活用したデータフロー解析フレームワークllmdfaを紹介する。
LLMDFAは、要約に基づくデータフロー分析にヒントを得て、問題を3つのサブプロブレムに分解する。
評価の結果,この設計は幻覚を緩和し,推論能力の向上,高精度化,ベンチマークプログラムにおけるデータフロー関連バグの検出におけるリコール,最新の産業分析装置を含む最先端(古典的)ツールよりも優れることが示された。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Impact of Large Language Models of Code on Fault Localization [2.936007114555107]
本稿では,FLタスクのための大規模言語モデルの微調整のための,単純だが効果的なシーケンス生成手法を提案する。
具体的には、FLタスク用の代表エンコーダ、エンコーダデコーダ、デコーダベースの13のLLMCを微調整する。
実験結果から, LLMCは50.6%, 64.2%, 72.3%の誤差位置を検出できた。
論文 参考訳(メタデータ) (2024-08-19T02:36:07Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
大規模言語モデル(LLM)は、様々な領域において可能性を示しているが、脆弱性のローカライゼーションにおけるその有効性は未解明のままである。
本調査では,ChatGPTや各種オープンソースモデルなど,コード解析に適した10以上のLLMを対象とする。
ゼロショット学習,ワンショット学習,識別的微調整,生成的微調整の4つのパラダイムを用いて,これらのLCMの有効性を検討する。
論文 参考訳(メタデータ) (2024-03-30T08:42:10Z) - Leveraging Large Language Models for Automated Proof Synthesis in Rust [6.202137610101939]
大規模言語モデル(LLM)は、コード解析と合成に成功している。
我々は、LLMと静的解析を組み合わせることで、Verusと呼ばれるRustベースの形式検証フレームワークの不変性、アサーション、その他の証明構造を合成する。
プロトタイプでは,検証タスクを複数の小さなタスクに分割し,反復的にGPT-4をクエリし,その出力と軽量な静的解析を組み合わせる。
論文 参考訳(メタデータ) (2023-11-07T05:47:47Z) - LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - The Hitchhiker's Guide to Program Analysis: A Journey with Large
Language Models [18.026567399243]
大規模言語モデル(LLM)は静的解析に代わる有望な選択肢を提供する。
本稿では,LLM支援静的解析のオープン空間を深く掘り下げる。
LLiftは,静的解析ツールとLLMの両方を併用した,完全に自動化されたフレームワークである。
論文 参考訳(メタデータ) (2023-08-01T02:57:43Z) - LLMDet: A Third Party Large Language Models Generated Text Detection
Tool [119.0952092533317]
大規模言語モデル(LLM)は、高品質な人間によるテキストに非常に近い。
既存の検出ツールは、機械が生成したテキストと人間によるテキストしか区別できない。
本稿では,モデル固有,セキュア,効率的,拡張可能な検出ツールであるLLMDetを提案する。
論文 参考訳(メタデータ) (2023-05-24T10:45:16Z) - Comparative Code Structure Analysis using Deep Learning for Performance
Prediction [18.226950022938954]
本稿では,アプリケーションの静的情報(抽象構文木やASTなど)を用いてコード構造の変化に基づいて性能変化を予測することの実現可能性を評価することを目的とする。
組込み学習手法の評価により,木系長短メモリ(LSTM)モデルでは,ソースコードの階層構造を利用して遅延表現を発見し,最大84%(個人的問題)と73%(複数の問題を含む組み合わせデータセット)の精度で性能変化を予測できることが示された。
論文 参考訳(メタデータ) (2021-02-12T16:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。