論文の概要: Distillation Enhanced Generative Retrieval
- arxiv url: http://arxiv.org/abs/2402.10769v1
- Date: Fri, 16 Feb 2024 15:48:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 15:26:59.570100
- Title: Distillation Enhanced Generative Retrieval
- Title(参考訳): 蒸留による生成的検索の促進
- Authors: Yongqi Li, Zhen Zhang, Wenjie Wang, Liqiang Nie, Wenjie Li, Tat-Seng
Chua
- Abstract要約: 生成的検索はテキスト検索において有望な新しいパラダイムであり、関連する通路の識別子文字列を検索対象として生成する。
本研究は, 蒸留による生成的検索をさらに促進するための有効な方向を特定し, DGR という名称の実行可能なフレームワークを提案する。
本研究では,4つの公開データセットに対して実験を行い,DGRが生成的検索手法の最先端性能を達成することを示す。
- 参考スコア(独自算出の注目度): 96.69326099136289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative retrieval is a promising new paradigm in text retrieval that
generates identifier strings of relevant passages as the retrieval target. This
paradigm leverages powerful generative language models, distinct from
traditional sparse or dense retrieval methods. In this work, we identify a
viable direction to further enhance generative retrieval via distillation and
propose a feasible framework, named DGR. DGR utilizes sophisticated ranking
models, such as the cross-encoder, in a teacher role to supply a passage rank
list, which captures the varying relevance degrees of passages instead of
binary hard labels; subsequently, DGR employs a specially designed distilled
RankNet loss to optimize the generative retrieval model, considering the
passage rank order provided by the teacher model as labels. This framework only
requires an additional distillation step to enhance current generative
retrieval systems and does not add any burden to the inference stage. We
conduct experiments on four public datasets, and the results indicate that DGR
achieves state-of-the-art performance among the generative retrieval methods.
Additionally, DGR demonstrates exceptional robustness and generalizability with
various teacher models and distillation losses.
- Abstract(参考訳): 生成的検索はテキスト検索において有望な新しいパラダイムであり、関連する通路の識別子文字列を検索対象として生成する。
このパラダイムは、伝統的なスパースや密度の高い検索方法とは異なる強力な生成言語モデルを活用する。
そこで本研究では, 蒸留による生成的検索をさらに促進するための有効な方向を特定し, DGR というフレームワークを提案する。
DGRは、教師の役割においてクロスエンコーダのような洗練されたランク付けモデルを使用して、二進的なハードラベルの代わりに様々な関連度を捉えた通過ランクリストを提供し、その後、教師モデルが提供する通過ランクの順序をラベルとして考慮し、生成検索モデルを最適化するために特別に設計されたロートネット損失を利用する。
このフレームワークは、現在の生成的検索システムを強化するために追加の蒸留ステップのみを必要とし、推論段階に負担を加えない。
本研究では,4つの公開データセットに対して実験を行い,DGRが生成的検索手法の最先端性能を達成することを示す。
さらに、DGRは様々な教師モデルと蒸留損失により、例外的な堅牢性と一般化性を示す。
関連論文リスト
- Multi-Granularity Semantic Revision for Large Language Model Distillation [66.03746866578274]
LLM蒸留における多粒性セマンティックリビジョン法を提案する。
シーケンスレベルでは、シーケンス修正と再生戦略を提案する。
トークンレベルでは、蒸留目的関数として、Kulback-Leibler損失を補正する分布適応クリッピングを設計する。
スパンレベルでは、シーケンスのスパン前処理を利用して、スパン内の確率相関を計算し、教師と学生の確率相関を一貫性に制約する。
論文 参考訳(メタデータ) (2024-07-14T03:51:49Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - GAR-meets-RAG Paradigm for Zero-Shot Information Retrieval [16.369071865207808]
本稿では,既存のパラダイムの課題を克服する新しいGAR-meets-RAG再帰の定式化を提案する。
鍵となる設計原則は、リライト・検索段階がシステムのリコールを改善し、最終段階が精度を向上させることである。
我々の手法はBEIRベンチマークで新たな最先端性を確立し、8つのデータセットのうち6つでRecall@100とnDCG@10の指標で過去の最高の結果を上回った。
論文 参考訳(メタデータ) (2023-10-31T03:52:08Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
生成的検索は、検索対象として関連する通路の識別子文字列を生成することを目的としている。
我々はLTRGRと呼ばれる生成検索のための学習 torankフレームワークを提案する。
このフレームワークは、現在の生成的検索システムを強化するために、追加の学習からランクまでのトレーニングフェーズのみを必要とする。
論文 参考訳(メタデータ) (2023-06-27T05:48:14Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
大規模なニューラルモデル(トランスフォーマーなど)は、情報検索(IR)のための最先端のパフォーマンスを達成する
本研究では,大規模教師モデルで学習したクエリとドキュメント間の相対的幾何を利用した新しい蒸留手法を提案する。
提案手法は, 両エンコーダ (DE) とクロスエンコーダ (CE) の2種類の教師モデルから, 95~97%の教師性能を維持できる1/10の非対称な学生への蒸留に成功した。
論文 参考訳(メタデータ) (2023-01-27T22:04:37Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Beyond [CLS] through Ranking by Generation [22.27275853263564]
我々は情報検索のための生成フレームワークを再考する。
我々の生成的アプローチは、解答選択タスクに対する最先端のセマンティック類似性に基づく識別モデルと同じくらい有効であることを示す。
論文 参考訳(メタデータ) (2020-10-06T22:56:31Z) - Interpretable Learning-to-Rank with Generalized Additive Models [78.42800966500374]
ラーニング・ツー・ランクのモデルの解釈可能性は、非常に重要でありながら、比較的過小評価されている研究分野である。
解釈可能なランキングモデルの最近の進歩は、主に既存のブラックボックスランキングモデルに対するポストホックな説明の生成に焦点を当てている。
一般化加法モデル(GAM)をランキングタスクに導入することにより,本質的に解釈可能な学習 to ランクの基盤を築いた。
論文 参考訳(メタデータ) (2020-05-06T01:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。