論文の概要: HeteRAG: A Heterogeneous Retrieval-augmented Generation Framework with Decoupled Knowledge Representations
- arxiv url: http://arxiv.org/abs/2504.10529v1
- Date: Sat, 12 Apr 2025 13:12:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:10:51.874851
- Title: HeteRAG: A Heterogeneous Retrieval-augmented Generation Framework with Decoupled Knowledge Representations
- Title(参考訳): HeteRAG: 疎結合な知識表現を持つ不均一検索拡張生成フレームワーク
- Authors: Peiru Yang, Xintian Li, Zhiyang Hu, Jiapeng Wang, Jinhua Yin, Huili Wang, Lizhi He, Shuai Yang, Shangguang Wang, Yongfeng Huang, Tao Qi,
- Abstract要約: 検索拡張ジェネレーション(RAG)法はLLMの性能を向上させることができる。
既存のRAG法では、検索と生成の両方に知識チャンクの同一表現を用いるのが一般的である。
検索と生成のための知識チャンクの表現を分離する異種RAGフレームワーク(myname)を提案する。
- 参考スコア(独自算出の注目度): 36.61614799098233
- License:
- Abstract: Retrieval-augmented generation (RAG) methods can enhance the performance of LLMs by incorporating retrieved knowledge chunks into the generation process. In general, the retrieval and generation steps usually have different requirements for these knowledge chunks. The retrieval step benefits from comprehensive information to improve retrieval accuracy, whereas excessively long chunks may introduce redundant contextual information, thereby diminishing both the effectiveness and efficiency of the generation process. However, existing RAG methods typically employ identical representations of knowledge chunks for both retrieval and generation, resulting in suboptimal performance. In this paper, we propose a heterogeneous RAG framework (\myname) that decouples the representations of knowledge chunks for retrieval and generation, thereby enhancing the LLMs in both effectiveness and efficiency. Specifically, we utilize short chunks to represent knowledge to adapt the generation step and utilize the corresponding chunk with its contextual information from multi-granular views to enhance retrieval accuracy. We further introduce an adaptive prompt tuning method for the retrieval model to adapt the heterogeneous retrieval augmented generation process. Extensive experiments demonstrate that \myname achieves significant improvements compared to baselines.
- Abstract(参考訳): 検索可能な知識チャンクを生成プロセスに組み込むことで,LLMの性能を向上させることができる。
一般に、検索と生成のステップは、通常これらの知識チャンクに対して異なる要件を持つ。
検索ステップは包括的な情報から恩恵を受け、検索精度が向上する一方、過剰に長いチャンクは冗長なコンテキスト情報を導入し、生成プロセスの有効性と効率を低下させる。
しかし、既存のRAG法では、検索と生成の両方に知識チャンクの同一表現が使用されるのが一般的であり、結果として準最適性能が得られる。
本稿では,検索と生成のための知識チャンクの表現を分離するヘテロジニアスなRAGフレームワーク(\myname)を提案する。
具体的には,知識を表現した短いチャンクを用いて生成ステップを適応させ,そのコンテキスト情報を多粒度ビューから取得し,精度を向上させる。
さらに、不均一な検索拡張生成プロセスに適応するために、検索モデルに対する適応的なプロンプトチューニング手法を導入する。
大規模な実験では、'myname'はベースラインよりも大幅に改善されている。
関連論文リスト
- Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG)は質問応答のための大規模言語モデル(LLM)における事実誤りと幻覚を緩和する
我々は、ノート中心の適応検索により、知識ソースの奥深くで堅牢な探索を実現する適応RAGフレームワークであるDeepNoteを開発した。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation [60.04380907045708]
Retrieval-Augmented Generation (RAG)は、この問題に対処するための有望な戦略と考えられている。
我々は,グローバルメモリ拡張検索による新しいRAGフレームワークであるMemoRAGを提案する。
MemoRAGは、様々な長期コンテキスト評価タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-09-09T13:20:31Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
大きな言語モデル(LLM)のメモリを拡張する一般的な方法は、検索拡張生成(RAG)である。
本稿では,検索結果の集合に対するクエリに関連する総情報の確率的尺度である,関連情報ゲインに基づく新しい単純な最適化指標を提案する。
RAGシステムの検索コンポーネントのドロップイン置換として使用すると、質問応答タスクにおける最先端のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2024-07-16T18:09:21Z) - Distillation Enhanced Generative Retrieval [96.69326099136289]
生成的検索はテキスト検索において有望な新しいパラダイムであり、関連する通路の識別子文字列を検索対象として生成する。
本研究は, 蒸留による生成的検索をさらに促進するための有効な方向を特定し, DGR という名称の実行可能なフレームワークを提案する。
本研究では,4つの公開データセットに対して実験を行い,DGRが生成的検索手法の最先端性能を達成することを示す。
論文 参考訳(メタデータ) (2024-02-16T15:48:24Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Active Retrieval Augmented Generation [123.68874416084499]
外部知識資源から情報を取得することで、大きな言語モデル(LM)を拡張することは、有望な解決策である。
ほとんどの既存の検索拡張LMは、入力に基づいて一度だけ情報を検索する検索と生成のセットアップを採用している。
本稿では,将来的な内容を予測するために,文の予測を反復的に利用する汎用手法であるフォワード・フォワード・アクティブ・レトリヴァル・ジェネレーション・ジェネレーション(FLARE)を提案する。
論文 参考訳(メタデータ) (2023-05-11T17:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。