Tailoring Polarization in WSe$_2$ Quantum Emitters through Deterministic Strain Engineering
- URL: http://arxiv.org/abs/2402.11075v2
- Date: Wed, 20 Mar 2024 10:46:59 GMT
- Title: Tailoring Polarization in WSe$_2$ Quantum Emitters through Deterministic Strain Engineering
- Authors: Athanasios Paralikis, Claudia Piccinini, Abdulmalik A. Madigawa, Pietro Metuh, Luca Vannucci, Niels Gregersen, Battulga Munkhbat,
- Abstract summary: Quantum emitters in transition metal dichalcogenides (TMDs) have emerged as a promising platform for generating single photons for optical quantum information processing.
We present an approach for deterministically controlling the polarization of fabricated quantum emitters in a diselenide (WSe$$) monolayer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum emitters in transition metal dichalcogenides (TMDs) have recently emerged as a promising platform for generating single photons for optical quantum information processing. In this work, we present an approach for deterministically controlling the polarization of fabricated quantum emitters in a tungsten diselenide (WSe$_2$) monolayer. We employ novel nanopillar geometries with long and sharp tips to induce a controlled directional strain in the monolayer, and we report on fabricated WSe$_2$ emitters producing single photons with a high degree of polarization $(99\pm 4 \%)$ and high purity ($g^{(2)}(0) = 0.030 \pm 0.025$). Our work paves the way for the deterministic integration of TMD-based quantum emitters for future photonic quantum technologies.
Related papers
- Single-photon circularly polarized single-mode vortex beams [0.0]
On-chip generation of single photons encoded with single-mode SAM-OAM states has been a major challenge.
We demonstrate on-chip room-temperature generation of well-collimated (divergence 7.5 degrees) circularly polarized single-mode vortex beams.
The developed approach can straightforwardly be extended to produce multiple, differently polarized, single-mode single-photon radiation channels.
arXiv Detail & Related papers (2023-05-14T18:50:04Z) - Bursts of polarised single photons from atom-cavity sources [3.6594988197536344]
We propose a scheme for producing bursts of polarised single photons by coupling a generalised atomic emitter to an optical cavity.
In connection with two re-preparation methods, simulations predict 10-photon bursts coincidence count rates on the order of 1 kHz.
This paves the way for novel n-photon experiments with atom-cavity sources.
arXiv Detail & Related papers (2023-05-08T17:39:21Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Composite picosecond control of atomic state through a nanofiber
interface [2.0765679900082934]
Composite picosecond optical pulses with optimally tailored phases are able to control the atomic electric dipole transitions nearly perfectly.
This unprecedented ability would allow error-resilient atomic spectroscopy and open up novel nonlinear quantum optical research with atom-nanophotonic interfaces.
arXiv Detail & Related papers (2022-03-13T17:13:10Z) - Brobdingnagian photon bunching in cathodoluminescence of excitons in
WS$_2$ monolayer [1.478983298867432]
Cathodoluminescence spectroscopy allows to extensively study the synchronization of quantum light sources.
Co-existing excitons in two-dimensional transition metal dichalcogenide monolayers provide a great source of identical quantum emitters.
arXiv Detail & Related papers (2021-11-15T08:26:53Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.