論文の概要: BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering
- arxiv url: http://arxiv.org/abs/2402.11129v3
- Date: Tue, 15 Oct 2024 20:55:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:39:15.697344
- Title: BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering
- Title(参考訳): BlendFilter: クエリ生成と知識フィルタリングによる検索強化された大規模言語モデルの改善
- Authors: Haoyu Wang, Ruirui Li, Haoming Jiang, Jinjin Tian, Zhengyang Wang, Chen Luo, Xianfeng Tang, Monica Cheng, Tuo Zhao, Jing Gao,
- Abstract要約: BlendFilterは、知識フィルタリングと組み合わせたクエリ生成を統合することで、検索強化された大規模言語モデルを高める新しいアプローチである。
我々は3つのオープンドメイン質問応答ベンチマークで広範な実験を行い、我々の革新的なBlendFilterが最先端のベースラインをはるかに上回っていることを明らかにした。
- 参考スコア(独自算出の注目度): 58.403898834018285
- License:
- Abstract: Retrieval-augmented Large Language Models (LLMs) offer substantial benefits in enhancing performance across knowledge-intensive scenarios. However, these methods often face challenges with complex inputs and encounter difficulties due to noisy knowledge retrieval, notably hindering model effectiveness. To address this issue, we introduce BlendFilter, a novel approach that elevates retrieval-augmented LLMs by integrating query generation blending with knowledge filtering. BlendFilter proposes the blending process through its query generation method, which integrates both external and internal knowledge augmentation with the original query, ensuring comprehensive information gathering. Additionally, our distinctive knowledge filtering module capitalizes on the intrinsic capabilities of the LLM, effectively eliminating extraneous data. We conduct extensive experiments on three open-domain question answering benchmarks, and the findings clearly indicate that our innovative BlendFilter surpasses state-of-the-art baselines significantly.
- Abstract(参考訳): Retrieval-augmented Large Language Models (LLMs)は、知識集約型シナリオのパフォーマンス向上において、大きなメリットを提供する。
しかし、これらの手法は複雑な入力とノイズの多い知識検索による困難に直面することが多く、特にモデルの有効性を阻害する。
この問題に対処するためにBlendFilterを導入し、知識フィルタリングとクエリ生成を融合させることにより、検索拡張LDMを増大させる新しいアプローチを提案する。
BlendFilter氏は、外部知識と内部知識の両方を元のクエリと統合し、包括的な情報収集を保証するクエリ生成手法によるブレンディングプロセスを提案する。
さらに,LLMの本質的な機能に特有な知識フィルタリングモジュールを付加し,外部データを効果的に除去する。
我々は3つのオープンドメイン質問応答ベンチマークで広範な実験を行い、我々の革新的なBlendFilterが最先端のベースラインをはるかに上回っていることを明らかにした。
関連論文リスト
- Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation [28.568010424711563]
大規模言語モデル(LLM)は、パラメトリックな知識が限られ、ドメイン固有の専門知識が欠如しているため、幻覚に弱いままである。
Retrieval-Augmented Generation (RAG)は、LLMの知識基盤を強化するために外部文書検索を組み込むことによって、この問題に対処する。
発電機に供給する前に外部の知識ソースを洗練するためのコンパクトで効率的でプラガブルなモジュールを導入する。
論文 参考訳(メタデータ) (2025-02-18T16:38:39Z) - Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection [72.92366526004464]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) がより正確で信頼性の高い応答を生成するのに有効であることが証明されている。
本稿では,自己選択型RAGフレームワークを提案する。このフレームワークでは,内部パラメトリック知識のみで生成されたペアの応答からLLMを選択できる。
論文 参考訳(メタデータ) (2025-02-10T04:29:36Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model [9.224965304457708]
本稿では,新しいマルチモーダル検索フレームワークであるMLLM (CUE-M) について述べる。
マルチモーダルなQ&Aデータセットとパブリックセーフティベンチマークによる評価は、CUE-Mが精度、知識統合、安全性のベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2024-11-19T07:16:48Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Vietnamese Legal Information Retrieval in Question-Answering System [0.0]
Retrieval Augmented Generation (RAG)は,大規模言語モデル(LLM)の能力向上に大きく貢献している。
しかしながら、RAGはいくつかの課題のためにベトナム語に適用されると、しばしば不足する。
本報告では,これらの課題に対処するための3つの主な修正点を紹介する。
論文 参考訳(メタデータ) (2024-09-05T02:34:05Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - An Information Bottleneck Perspective for Effective Noise Filtering on Retrieval-Augmented Generation [35.76451156732993]
情報ボトルネック理論を検索強化世代に導入する。
提案手法では,圧縮と地盤出力の相互情報を同時に最大化することにより,ノイズのフィルタリングを行う。
我々は,情報ボトルネックの定式化を導出し,新たな包括的評価を行う。
論文 参考訳(メタデータ) (2024-06-03T17:31:06Z) - Learning to Filter Context for Retrieval-Augmented Generation [75.18946584853316]
生成モデルは、部分的にまたは完全に無関係な経路が与えられた出力を生成するために要求される。
FILCOは、語彙と情報理論のアプローチに基づいて有用なコンテキストを特定する。
テスト時に検索したコンテキストをフィルタリングできるコンテキストフィルタリングモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-14T18:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。