Evolution of strictly localized states in non-interacting quantum field
theories with background fields
- URL: http://arxiv.org/abs/2402.11132v1
- Date: Fri, 16 Feb 2024 23:44:00 GMT
- Title: Evolution of strictly localized states in non-interacting quantum field
theories with background fields
- Authors: M. Alkhateeb and A. Matzkin
- Abstract summary: We investigate the construction of spin-1/2 fermionic and spin-0 bosonic wave-packets having compact spatial support.
In order to construct perfectly localized wave-packets, we introduce a spatial density operator accounting for particles of both positive and negative charge.
The formalism is illustrated by computing numerically the Klein tunneling dynamics of strictly localized wave-packets impinging on a supercritical electrostatic step.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the construction of spin-1/2 fermionic and spin-0 bosonic
wave-packets having compact spatial support in the framework of a computational
quantum field theory (QFT) scheme offering space-time solutions of the
relativistic wave equations in background fields. In order to construct
perfectly localized wave-packets, we introduce a spatial density operator
accounting for particles of both positive and negative charge. We examine
properties of the vacuum and single-particle expectation values of this
operator and compare them to the standard QFT particle and anti-particle
spatial densities. The formalism is illustrated by computing numerically the
Klein tunneling dynamics of strictly localized wave-packets impinging on a
supercritical electrostatic step. The density operator introduced here could be
useful to model situations in which it is desirable to avoid dealing with the
infinite spatial tails intrinsic to pure particle or anti-particle
wave-packets.
Related papers
- Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Simulating Meson Scattering on Spin Quantum Simulators [30.432877421232842]
We develop two methods to create entangled spin states corresponding to wave packets of composite particles in analog quantum simulators of Ising spin Hamiltonians.
With a focus on trapped-ion simulators, we numerically benchmark both methods and show that high-fidelity wave packets can be achieved in near-term experiments.
arXiv Detail & Related papers (2024-03-11T18:00:07Z) - Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Real-Space, Real-Time Approach to Quantum-Electrodynamical
Time-Dependent Density Functional Theory [55.41644538483948]
The equations are solved by time propagating the wave function on a tensor product of a Fock-space and real-space grid.
Examples include the coupling strength and light frequency dependence of the energies, wave functions, optical absorption spectra, and Rabi splitting magnitudes in cavities.
arXiv Detail & Related papers (2022-09-01T18:49:51Z) - Localized non-relativistic quantum systems in curved spacetimes: a
general characterization of particle detector models [0.0]
We provide a consistent way of describing a localized non-relativistic quantum system undergoing a timelike trajectory in a curved spacetime.
This framework naturally provides a recipe for mapping a quantum theory defined in a non-relativistic background to a theory around a timelike trajectory in curved spacetimes.
We then apply our formalism to particle detector models, that is, to the case where the non-relativistic quantum system is coupled to a quantum field in a curved background.
arXiv Detail & Related papers (2022-06-02T18:00:31Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Vortex particles in axially symmetric fields and applications of the
quantum Busch theorem [0.0]
We show that vortex particles can be accelerated, focused, steered, trapped, and even stored in azimuthally symmetric fields and traps.
We give a quantum version of the Busch theorem, which states how one can produce vortex ions and protons by using a magnetized stripping foil employed to change a charge state of ions.
arXiv Detail & Related papers (2020-12-10T15:25:13Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.