論文の概要: SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Embedded AI Systems
- arxiv url: http://arxiv.org/abs/2402.11322v4
- Date: Wed, 02 Jul 2025 15:13:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-03 14:22:55.829671
- Title: SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Embedded AI Systems
- Title(参考訳): SpikeNAS: ニューラルネットワークベースの組み込みAIシステムをスパイクするための高速メモリ対応ニューラルネットワーク検索フレームワーク
- Authors: Rachmad Vidya Wicaksana Putra, Muhammad Shafique,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、高精度で超低消費電力/エネルギー計算を提供する。
SpikeNASは、SNNのための新しい高速メモリ対応ニューラルアーキテクチャ検索フレームワークである。
以上の結果から,SpikeNASは検索時間を改善するとともに,最先端技術と比較して高い精度を維持していることがわかった。
- 参考スコア(独自算出の注目度): 6.006032394972252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Embedded AI systems are expected to incur low power/energy consumption for solving machine learning tasks, as these systems are usually power constrained (e.g., object recognition task in autonomous mobile agents with portable batteries). These requirements can be fulfilled by Spiking Neural Networks (SNNs), since their bio-inspired spike-based operations offer high accuracy and ultra low-power/energy computation. Currently, most of SNN architectures are derived from Artificial Neural Networks whose neurons' architectures and operations are different from SNNs, and/or developed without considering memory budgets from the underlying processing hardware of embedded platforms. These limitations hinder SNNs from reaching their full potential in accuracy and efficiency. Toward this, we propose SpikeNAS, a novel fast memory-aware neural architecture search (NAS) framework for SNNs that quickly finds an appropriate SNN architecture with high accuracy under the given memory budgets from targeted embedded systems. To do this, our SpikeNAS employs several key steps: analyzing the impacts of network operations on the accuracy, enhancing the network architecture to improve the learning quality, developing a fast memory-aware search algorithm, and performing quantization. The experimental results show that our SpikeNAS improves the searching time and maintains high accuracy compared to state-of-the-art while meeting the given memory budgets (e.g., 29x, 117x, and 3.7x faster search for CIFAR10, CIFAR100, and TinyImageNet200 respectively, using an Nvidia RTX A6000 GPU machine), thereby quickly providing the appropriate SNN architecture for the memory-constrained embedded AI systems.
- Abstract(参考訳): 組み込みAIシステムは、通常、電力に制約があるため、機械学習タスクを解くために低電力/エネルギー消費を発生させることが期待されている(例えば、ポータブルバッテリーを備えた自律移動体エージェントにおける物体認識タスク)。
これらの要求は、バイオインスパイアされたスパイクベースの操作が高精度で超低消費電力/エネルギー計算を提供するため、スパイクニューラルネットワーク(SNN)によって満たされる。
現在、ほとんどのSNNアーキテクチャは、ニューロンのアーキテクチャと操作がSNNとは異なる人工ニューラルネットワークから派生しており、組み込みプラットフォームの基盤となる処理ハードウェアからメモリ予算を考慮せずに開発されている。
これらの制限により、SNNは正確性と効率性において大きな可能性を秘めている。
そこで我々は,SNNのための新しい高速メモリ対応ニューラルアーキテクチャ探索(NAS)フレームワークであるSpikeNASを提案する。
これを実現するために、私たちのSpikeNASでは、ネットワーク操作が正確性に与える影響を分析し、学習品質を改善するためにネットワークアーキテクチャを拡張し、高速なメモリ認識検索アルゴリズムを開発し、量子化を実行します。
実験結果から,我々のSpikeNASは検索時間を向上し,与えられたメモリ予算(CIFAR10,CIFAR100,TinyImageNet200,CIFAR100の3.7倍高速化,Nvidia RTX A6000 GPUマシン)を満たしながら最先端のSNNアーキテクチャよりも高い精度を維持し,メモリに制約のある組込みAIシステムに適したSNNアーキテクチャを迅速に提供することを示した。
関連論文リスト
- LightSNN: Lightweight Architecture Search for Sparse and Accurate Spiking Neural Networks [1.0485739694839666]
スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率、固有の活性化空間、エッジデバイスにおけるリアルタイム処理に適していると高く評価されている。
現在のSNN手法の多くは、従来の人工知能ニューラルネットワーク(ANN)に似たアーキテクチャを採用しており、SNNに適用した場合、最適以下の性能が得られる。
本稿では,高速かつ効率的なニューラルネットワークアーキテクチャ探索(NAS)技術であるLightSNNについて述べる。
論文 参考訳(メタデータ) (2025-03-27T16:38:13Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
ニューラルアーキテクチャサーチ(NAS)により、リサーチ者は広大なサーチスペースを自動的に探索し、効率的なニューラルネットワークを見つけることができる。
NASは重要なボトルネックに悩まされており、探索プロセス中に多くのアーキテクチャを評価する必要がある。
SMEM-NASは,多集団構造に基づく多目的進化アルゴリズムである。
論文 参考訳(メタデータ) (2024-07-22T12:46:22Z) - HASNAS: A Hardware-Aware Spiking Neural Architecture Search Framework for Neuromorphic Compute-in-Memory Systems [6.006032394972252]
スパイキングニューラルネットワーク(SNN)は、超低消費電力/エネルギー計算で多様な機械学習タスクを解く能力を示している。
ニューロモルフィックCIMシステムのための新しいハードウェア対応スパイクニューラルネットワーク探索フレームワークであるHASNASを提案する。
論文 参考訳(メタデータ) (2024-06-30T09:51:58Z) - SNN4Agents: A Framework for Developing Energy-Efficient Embodied Spiking Neural Networks for Autonomous Agents [6.110543738208028]
スパイキングニューラルネットワーク(SNN)は、イベントベースのカメラやデータ変換前処理からのスパイクを使用して、スパース計算を効率的に行う。
本稿では,エネルギー効率の良いSNNを設計するための最適化手法からなるSNN4Agentsという新しいフレームワークを提案する。
我々のフレームワークは、68.75%のメモリ節約、3.58倍のスピードアップ、4.03倍のエネルギー効率で高い精度(84.12%の精度)を維持することができる。
論文 参考訳(メタデータ) (2024-04-14T19:06:00Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
バイナリ重みとアクティベーションを備えた1ビット畳み込みニューラルネットワーク(CNN)は、リソース制限された組み込みデバイスの可能性を示している。
自然なアプローチの1つは、NASの計算とメモリコストを削減するために1ビットCNNを使用することである。
本稿では,1ビットCNNを効率的に探索するためにDCP-NAS(Disrepant Child-Parent Neural Architecture Search)を提案する。
論文 参考訳(メタデータ) (2023-06-27T11:28:29Z) - AutoSNN: Towards Energy-Efficient Spiking Neural Networks [26.288681480713695]
スパイキングニューラルネットワーク(SNN)は、脳内の情報伝達を模倣する。
これまでのほとんどの研究は訓練方法のみに焦点を合わせており、建築の影響はめったに研究されていない。
我々はAutoSNNと呼ばれるスパイク対応ニューラルネットワーク検索フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-30T06:12:59Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。