Evaluating the Stability of Deep Learning Latent Feature Spaces
- URL: http://arxiv.org/abs/2402.11404v3
- Date: Wed, 21 Aug 2024 00:31:29 GMT
- Title: Evaluating the Stability of Deep Learning Latent Feature Spaces
- Authors: Ademide O. Mabadeje, Michael J. Pyrcz,
- Abstract summary: This study introduces a novel workflow to evaluate the stability of latent spaces, ensuring consistency and reliability in subsequent analyses.
We implement this workflow across 500 autoencoder realizations and three datasets, encompassing both synthetic and real-world scenarios.
Our findings highlight inherent instabilities in latent feature spaces and demonstrate the workflow's efficacy in quantifying and interpreting these instabilities.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-dimensional datasets present substantial challenges in statistical modeling across various disciplines, necessitating effective dimensionality reduction methods. Deep learning approaches, notable for their capacity to distill essential features from complex data, facilitate modeling, visualization, and compression through reduced dimensionality latent feature spaces, have wide applications from bioinformatics to earth sciences. This study introduces a novel workflow to evaluate the stability of these latent spaces, ensuring consistency and reliability in subsequent analyses. Stability, defined as the invariance of latent spaces to minor data, training realizations, and parameter perturbations, is crucial yet often overlooked. Our proposed methodology delineates three stability types, sample, structural, and inferential, within latent spaces, and introduces a suite of metrics for comprehensive evaluation. We implement this workflow across 500 autoencoder realizations and three datasets, encompassing both synthetic and real-world scenarios to explain latent space dynamics. Employing k-means clustering and the modified Jonker-Volgenant algorithm for class alignment, alongside anisotropy metrics and convex hull analysis, we introduce adjusted stress and Jaccard dissimilarity as novel stability indicators. Our findings highlight inherent instabilities in latent feature spaces and demonstrate the workflow's efficacy in quantifying and interpreting these instabilities. This work advances the understanding of latent feature spaces, promoting improved model interpretability and quality control for more informed decision-making for diverse analytical workflows that leverage deep learning.
Related papers
- Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
Real-world applications of reinforcement learning often involve environments where agents operate on complex, high-dimensional observations.
This paper addresses the question of reinforcement learning under $textitgeneral$ latent dynamics from a statistical and algorithmic perspective.
arXiv Detail & Related papers (2024-10-23T14:22:49Z) - Explainability of Point Cloud Neural Networks Using SMILE: Statistical Model-Agnostic Interpretability with Local Explanations [0.0]
This study explores the implementation of SMILE, a novel explainability method originally designed for deep neural networks, on point cloud-based models.
The approach demonstrates superior performance in terms of fidelity loss, R2 scores, and robustness across various kernel widths, perturbation numbers, and clustering configurations.
The study further identifies dataset biases in the classification of the 'person' category, emphasizing the necessity for more comprehensive datasets in safety-critical applications.
arXiv Detail & Related papers (2024-10-20T12:13:59Z) - Stability Evaluation via Distributional Perturbation Analysis [28.379994938809133]
We propose a stability evaluation criterion based on distributional perturbations.
Our stability evaluation criterion can address both emphdata corruptions and emphsub-population shifts.
Empirically, we validate the practical utility of our stability evaluation criterion across a host of real-world applications.
arXiv Detail & Related papers (2024-05-06T06:47:14Z) - Branch-Tuning: Balancing Stability and Plasticity for Continual Self-Supervised Learning [33.560003528712414]
Self-supervised learning (SSL) has emerged as an effective paradigm for deriving general representations from vast amounts of unlabeled data.
This poses a challenge in striking a balance between stability and plasticity when adapting to new information.
We propose Branch-tuning, an efficient and straightforward method that achieves a balance between stability and plasticity in continual SSL.
arXiv Detail & Related papers (2024-03-27T05:38:48Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Learning World Models with Identifiable Factorization [39.767120163665574]
We propose IFactor to model four distinct categories of latent state variables.
Our analysis establishes block-wise identifiability of these latent variables.
We present a practical approach to learning the world model with identifiable blocks.
arXiv Detail & Related papers (2023-06-11T02:25:15Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.