Federated Continual Learning: Concepts, Challenges, and Solutions
- URL: http://arxiv.org/abs/2502.07059v1
- Date: Mon, 10 Feb 2025 21:51:02 GMT
- Title: Federated Continual Learning: Concepts, Challenges, and Solutions
- Authors: Parisa Hamedi, Roozbeh Razavi-Far, Ehsan Hallaji,
- Abstract summary: Federated Continual Learning (FCL) has emerged as a robust solution for collaborative model training in dynamic environments.
This survey focuses on key challenges such as heterogeneity, model stability, communication overhead, and privacy preservation.
- Score: 3.379574469735166
- License:
- Abstract: Federated Continual Learning (FCL) has emerged as a robust solution for collaborative model training in dynamic environments, where data samples are continuously generated and distributed across multiple devices. This survey provides a comprehensive review of FCL, focusing on key challenges such as heterogeneity, model stability, communication overhead, and privacy preservation. We explore various forms of heterogeneity and their impact on model performance. Solutions to non-IID data, resource-constrained platforms, and personalized learning are reviewed in an effort to show the complexities of handling heterogeneous data distributions. Next, we review techniques for ensuring model stability and avoiding catastrophic forgetting, which are critical in non-stationary environments. Privacy-preserving techniques are another aspect of FCL that have been reviewed in this work. This survey has integrated insights from federated learning and continual learning to present strategies for improving the efficacy and scalability of FCL systems, making it applicable to a wide range of real-world scenarios.
Related papers
- Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)
We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.
Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Unleashing the Power of Continual Learning on Non-Centralized Devices: A Survey [37.07938402225207]
Non- Continual Learning (NCCL) has become an emerging paradigm for enabling distributed devices to handle streaming data from a joint non-stationary environment.
This survey focuses on the development of the non-centralized continual learning algorithms and the real-world deployment across distributed devices.
arXiv Detail & Related papers (2024-12-18T13:33:28Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.
FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.
We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - Addressing Heterogeneity in Federated Learning: Challenges and Solutions for a Shared Production Environment [1.2499537119440245]
Federated learning (FL) has emerged as a promising approach to training machine learning models across decentralized data sources.
This paper provides a comprehensive overview of data heterogeneity in FL within the context of manufacturing.
We discuss the impact of these types of heterogeneity on model training and review current methodologies for mitigating their adverse effects.
arXiv Detail & Related papers (2024-08-18T17:49:44Z) - Evaluating the Stability of Deep Learning Latent Feature Spaces [0.0]
This study introduces a novel workflow to evaluate the stability of latent spaces, ensuring consistency and reliability in subsequent analyses.
We implement this workflow across 500 autoencoder realizations and three datasets, encompassing both synthetic and real-world scenarios.
Our findings highlight inherent instabilities in latent feature spaces and demonstrate the workflow's efficacy in quantifying and interpreting these instabilities.
arXiv Detail & Related papers (2024-02-17T23:41:15Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
arXiv Detail & Related papers (2023-10-31T23:26:58Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Non-IID data and Continual Learning processes in Federated Learning: A
long road ahead [58.720142291102135]
Federated Learning is a novel framework that allows multiple devices or institutions to train a machine learning model collaboratively while preserving their data private.
In this work, we formally classify data statistical heterogeneity and review the most remarkable learning strategies that are able to face it.
At the same time, we introduce approaches from other machine learning frameworks, such as Continual Learning, that also deal with data heterogeneity and could be easily adapted to the Federated Learning settings.
arXiv Detail & Related papers (2021-11-26T09:57:11Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.