論文の概要: Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics
- arxiv url: http://arxiv.org/abs/2402.11515v4
- Date: Mon, 29 Apr 2024 13:09:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 23:35:54.695786
- Title: Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics
- Title(参考訳): 深部強化学習に基づく計算流体力学におけるアクティブフロー制御のための最適並列化法
- Authors: Wang Jia, Hang Xu,
- Abstract要約: 本研究では、DRLに基づくアルゴリズムを並列設定で最適化することに焦点を当てる。
我々は、AFC問題に使用される既存の最先端DRLフレームワークを検証し、その効率ボトルネックについて議論する。
並列効率を約49%から約78%に向上させ,60コアで約47倍の高速化を実現した。
- 参考スコア(独自算出の注目度): 29.49913315698914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning (DRL) has emerged as a promising approach for handling highly dynamic and nonlinear Active Flow Control (AFC) problems. However, the computational cost associated with training DRL models presents a significant performance bottleneck. To address this challenge and enable efficient scaling on high-performance computing architectures, this study focuses on optimizing DRL-based algorithms in parallel settings. We validate an existing state-of-the-art DRL framework used for AFC problems and discuss its efficiency bottlenecks. Subsequently, by deconstructing the overall framework and conducting extensive scalability benchmarks for individual components, we investigate various hybrid parallelization configurations and propose efficient parallelization strategies. Moreover, we refine input/output (I/O) operations in multi-environment DRL training to tackle critical overhead associated with data movement. Finally, we demonstrate the optimized framework for a typical AFC problem where near-linear scaling can be obtained for the overall framework. We achieve a significant boost in parallel efficiency from around 49% to approximately 78%, and the training process is accelerated by approximately 47 times using 60 CPU cores. These findings are expected to provide valuable insights for further advancements in DRL-based AFC studies.
- Abstract(参考訳): Deep Reinforcement Learning (DRL) は、高ダイナミックかつ非線形なアクティブフロー制御(AFC)問題を扱うための有望なアプローチとして登場した。
しかし、DRLモデルのトレーニングに伴う計算コストは、大きなパフォーマンスボトルネックを生じさせる。
この課題に対処し、高性能コンピューティングアーキテクチャの効率的なスケーリングを実現するために、DRLベースのアルゴリズムを並列設定で最適化することに焦点を当てた。
我々は、AFC問題に使用される既存の最先端DRLフレームワークを検証し、その効率ボトルネックについて議論する。
その後、フレームワーク全体を分解し、個々のコンポーネントの広範なスケーラビリティベンチマークを行うことで、様々なハイブリッド並列化構成を調査し、効率的な並列化戦略を提案する。
さらに、多環境DRLトレーニングにおける入出力(I/O)操作を洗練し、データ移動に伴う重大なオーバーヘッドに対処する。
最後に,一般のAFC問題に対して,フレームワーク全体に対してほぼ線形なスケーリングが得られる最適化されたフレームワークを実演する。
並列効率を約49%から約78%に向上させ,60コアで約47倍の高速化を実現した。
これらの知見は、DRLに基づくAFC研究のさらなる進歩に有用な知見をもたらすことが期待されている。
関連論文リスト
- CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs [30.441431693349866]
既存の方法は、微調整のための膨大な量の合成データを生成し、訓練の効率を損なう。
CodeACTはCDAS(Complexity and Diversity Aware Smpling)メソッドを導入し、高品質なトレーニングデータを選択する。
CodeACTはHumanEvalのパフォーマンスが8.6%向上し、トレーニング時間を78%削減し、ピーク時のGPUメモリ使用量を27%削減した。
論文 参考訳(メタデータ) (2024-08-05T02:38:48Z) - Spreeze: High-Throughput Parallel Reinforcement Learning Framework [19.3019166138232]
Spreezeは強化学習のための軽量並列フレームワークである。
単一のデスクトップハードウェアリソースを効率よく利用し、スループット制限にアプローチする。
最大15,000Hzのサンプリングと370,000Hzのネットワーク更新フレームレートを達成することができる。
論文 参考訳(メタデータ) (2023-12-11T05:25:01Z) - High-Performance Hybrid Algorithm for Minimum Sum-of-Squares Clustering of Infinitely Tall Data [0.3069335774032178]
本稿では,Infinitely Tall Data (MSSC-ITD) の最小二乗クラスタリングという,クラスタリング問題の新しい定式化を提案する。
現代の高性能コンピューティング技術を利用することで、HPClustは、有効性、計算効率、拡張性といった主要なクラスタリング指標を強化する。
論文 参考訳(メタデータ) (2023-11-08T08:02:52Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated Learning(FL)は、明示的なデータ共有を避けながら協調的なモデルトレーニングを可能にする分散機械学習技術である。
本稿では,Auto-FedRLと呼ばれる,効率的な強化学習(RL)に基づくフェデレーションハイパーパラメータ最適化アルゴリズムを提案する。
提案手法の有効性は,CIFAR-10データセットと2つの実世界の医用画像セグメンテーションデータセットの不均一なデータ分割に対して検証される。
論文 参考訳(メタデータ) (2022-03-12T04:11:42Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
適応行動優先型オフラインモデルに基づくRL(Adaptive Behavioral Priors:MABE)を導入する。
MABEは、ドメイン内の一般化をサポートする動的モデルと、ドメイン間の一般化をサポートする振る舞いの事前が相補的であることの発見に基づいている。
クロスドメインの一般化を必要とする実験では、MABEが先行手法より優れていることが判明した。
論文 参考訳(メタデータ) (2021-06-16T20:48:49Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Progressive extension of reinforcement learning action dimension for
asymmetric assembly tasks [7.4642148614421995]
本稿では,RLアルゴリズムの収束を最適化するために,行動次元の漸進的拡張(PEAD)機構を提案する。
結果は,pead法がrlアルゴリズムのデータ効率と時間効率を向上し,安定した報酬を得ることを示す。
論文 参考訳(メタデータ) (2021-04-06T11:48:54Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。