論文の概要: CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs
- arxiv url: http://arxiv.org/abs/2408.02193v1
- Date: Mon, 5 Aug 2024 02:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 14:45:49.801304
- Title: CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs
- Title(参考訳): CodeACT: コードLLMのためのコード適応型コンピュータ効率チューニングフレームワーク
- Authors: Weijie Lv, Xuan Xia, Sheng-Jun Huang,
- Abstract要約: 既存の方法は、微調整のための膨大な量の合成データを生成し、訓練の効率を損なう。
CodeACTはCDAS(Complexity and Diversity Aware Smpling)メソッドを導入し、高品質なトレーニングデータを選択する。
CodeACTはHumanEvalのパフォーマンスが8.6%向上し、トレーニング時間を78%削減し、ピーク時のGPUメモリ使用量を27%削減した。
- 参考スコア(独自算出の注目度): 30.441431693349866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown great potential in code-related tasks, yet open-source models lag behind their closed-source counterparts. To bridge this performance gap, existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training. Motivated by the need for more effective and efficient training, we propose the Code Adaptive Compute-efficient Tuning (CodeACT) framework. CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data based on complexity and diversity, and the Dynamic Pack padding strategy to reduce computational resource usage by minimizing padding tokens during training. Experimental results demonstrate that CodeACT-DeepSeek-Coder-6.7B, fine-tuned on only 40% of the EVOL-Instruct data, achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%. These findings underscore CodeACT's ability to enhance the performance and efficiency of open-source models. By optimizing both the data selection and training processes, CodeACT offers a comprehensive approach to improving the capabilities of open-source LLMs while significantly reducing computational requirements, addressing the dual challenges of data quality and training efficiency, and paving the way for more resource-efficient and performant models.
- Abstract(参考訳): 大規模言語モデル(LLM)は、コード関連のタスクにおいて大きな可能性を示していますが、オープンソースモデルは、クローズドソースモデルよりも遅れています。
この性能ギャップを埋めるために、既存の手法は微調整のための膨大な量の合成データを生成し、訓練の効率を損なう。
より効果的で効率的なトレーニングの必要性から、私たちはCode Adaptive Compute- efficient Tuning (CodeACT)フレームワークを提案します。
CodeACTでは、複雑さと多様性に基づいて高品質なトレーニングデータを選択するCDAS法と、トレーニング中にパディングトークンを最小化して計算リソースの使用量を削減するDynamic Packパディング戦略を導入している。
CodeACT-DeepSeek-Coder-6.7BはEVOL-Instructデータの40%のみを微調整し、HumanEvalの8.6%のパフォーマンス向上、トレーニング時間の78%削減、GPUメモリのピーク使用量の27%削減を実現している。
これらの知見は、オープンソースモデルの性能と効率を高めるCodeACTの能力を裏付けるものである。
データ選択とトレーニングプロセスの両方を最適化することにより、CodeACTは、計算要求を大幅に削減し、データ品質とトレーニング効率の2つの課題に対処し、よりリソース効率が高くパフォーマンスの高いモデルへの道を開くとともに、オープンソースのLLMの能力を改善するための包括的なアプローチを提供する。
関連論文リスト
- FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning [4.975728472540823]
各種クラスタリングとプルーニングのメトリクスを統合して、生成されたコードの正確性や機能を損なうことなく、トレーニングデータを選択的に削減する手法を提案する。
実験により,これらのプルーニング戦略は,必要な計算資源を削減するだけでなく,全体的な品質コード生成を向上することが示された。
論文 参考訳(メタデータ) (2024-07-06T10:30:43Z) - Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics [29.49913315698914]
Deep Reinforcement Learning (DRL) は、高ダイナミックかつ非線形なアクティブフロー制御(AFC)問題を扱うための有望なアプローチとして登場した。
本研究では、DRLに基づくアルゴリズムを並列設定で最適化することに焦点を当てる。
並列効率を約49%から約78%に向上させる。
論文 参考訳(メタデータ) (2024-02-18T09:07:30Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiEは、大規模な言語モデルの協調トレーニングを容易にする効率的なライブラリである。
モジュール設計と包括的な機能により、CoLLiEは効率性、使いやすさ、カスタマイズのバランスのとれたブレンドを提供する。
論文 参考訳(メタデータ) (2023-12-01T08:02:16Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
フェデレートラーニング(FL)は、分散データとの協調モデルトレーニングを可能にする、有望なパラダイムである。
LLM(Large Language Models)のトレーニングプロセスは一般的に重要なパラメータの更新を引き起こす。
本稿では,性能と効率を同時に向上する効率的な部分的プロンプトチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-10-23T16:37:59Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
我々は、事前訓練されたモデルのゼロショット構造化プルーニングにより、性能を最小限に抑えて計算効率を向上させることができると主張している。
その結果,事前訓練されたモデルの畳み込み畳み込みフィルタは,低計算条件下で20%以上の性能向上をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2023-04-25T21:49:09Z) - The Cost of Learning: Efficiency vs. Efficacy of Learning-Based RRM for
6G [10.28841351455586]
深層強化学習(DRL)は、複雑なネットワークにおける効率的な資源管理戦略を自動学習するための貴重なソリューションとなっている。
多くのシナリオでは、学習タスクはクラウドで実行され、経験サンプルはエッジノードまたはユーザによって直接生成される。
これにより、効果的な戦略に向けて収束をスピードアップする必要性と、学習サンプルの送信にリソースの割り当てが必要となることの間に摩擦が生じます。
本稿では,学習とデータプレーン間の動的バランス戦略を提案する。これにより,集中型学習エージェントは,効率的な資源配分戦略に迅速に収束することができる。
論文 参考訳(メタデータ) (2022-11-30T11:26:01Z) - FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server [64.94942635929284]
フェデレーテッド・ラーニング(FL)は2つの重要な課題、すなわち限られた計算資源と訓練効率の低下に悩まされている。
本稿では,サーバ上の不感なデータとエッジデバイスの分散データを利用する新しいFLフレームワークであるFedDUAPを提案する。
提案するFLモデルであるFedDUAPは,2つの元の手法を統合することで,精度(最大4.8%),効率(最大2.8倍),計算コスト(最大61.9%)において,ベースラインアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2022-04-25T10:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。