論文の概要: Statistical Test for Generated Hypotheses by Diffusion Models
- arxiv url: http://arxiv.org/abs/2402.11789v1
- Date: Mon, 19 Feb 2024 02:32:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 18:40:23.168589
- Title: Statistical Test for Generated Hypotheses by Diffusion Models
- Title(参考訳): 拡散モデルによる発生仮説の統計的検証
- Authors: Teruyuki Katsuoka, Tomohiro Shiraishi, Daiki Miwa, Vo Nguyen Le Duy,
Ichiro Takeuchi
- Abstract要約: 本稿では, 拡散モデルを用いた医用診断タスクについて検討し, その信頼性を定量的に評価するための統計的検査を提案する。
提案手法を用いて, 医用画像診断結果の統計的信頼性をp値の形で定量化し, 誤差率の制御による意思決定を可能にする。
- 参考スコア(独自算出の注目度): 21.378672594642616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The enhanced performance of AI has accelerated its integration into
scientific research. In particular, the use of generative AI to create
scientific hypotheses is promising and is increasingly being applied across
various fields. However, when employing AI-generated hypotheses for critical
decisions, such as medical diagnoses, verifying their reliability is crucial.
In this study, we consider a medical diagnostic task using generated images by
diffusion models, and propose a statistical test to quantify its reliability.
The basic idea behind the proposed statistical test is to employ a selective
inference framework, where we consider a statistical test conditional on the
fact that the generated images are produced by a trained diffusion model. Using
the proposed method, the statistical reliability of medical image diagnostic
results can be quantified in the form of a p-value, allowing for
decision-making with a controlled error rate. We show the theoretical validity
of the proposed statistical test and its effectiveness through numerical
experiments on synthetic and brain image datasets.
- Abstract(参考訳): AIの性能が向上し、科学研究への統合が加速した。
特に、科学的仮説を作成するための生成aiの使用は有望であり、様々な分野に適用されるようになっている。
しかし、医療診断などの重要な判断にaiが生成する仮説を用いる場合、その信頼性の検証が不可欠である。
本研究では,拡散モデルを用いて生成画像を用いた医療診断タスクを考察し,その信頼性を定量化するための統計的テストを提案する。
提案する統計的テストの背後にある基本的な考え方は、選択的推論フレームワークを採用することである。ここでは、生成された画像が訓練された拡散モデルによって生成されるという事実に基づく統計的テスト条件を考える。
提案手法を用いて, 医用画像診断結果の統計的信頼性をp値の形で定量化し, 誤差率の制御による意思決定を可能にする。
提案する統計的テストの理論的妥当性と,その有効性について,合成および脳画像データセットの数値実験により示す。
関連論文リスト
- Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
拡散モデルに基づく新しい教師なし異常検出フレームワークを提案する。
提案手法は, 合成ノイズ関数と多段拡散過程を組み込む。
提案手法は頸動脈US,脳MRI,肝CTを用いて検討した。
論文 参考訳(メタデータ) (2024-11-06T15:43:51Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
異常検出は、データセットの大部分から著しく逸脱する非定型的なデータサンプルを特定するプロセスである。
医用画像から抽出した特徴量の密度を推定し,拡散モードに基づく新しい異常検出手法を提案する。
提案手法は異常を識別するだけでなく,画像レベルと画素レベルでの解釈性も提供する。
論文 参考訳(メタデータ) (2023-10-10T08:44:47Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
本稿では拡散生成画像検出(SeDID)のためのステップワイド誤差と呼ばれる新しい検出法を提案する。
SeDIDは拡散モデルのユニークな特性、すなわち決定論的逆転と決定論的逆退誤差を利用する。
我々の研究は拡散モデル生成画像の識別に重要な貢献をしており、人工知能のセキュリティ分野における重要なステップとなっている。
論文 参考訳(メタデータ) (2023-07-12T16:16:37Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
真値を含むことが保証される各画素の周囲の不確実な間隔を導出する方法を示す。
画像から画像への回帰を3つのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-10T18:59:56Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
unpaired image-to-image translationは、教師なしの方法で画像ドメイン間のマッピングを学ぶことを指す。
既存の手法はしばしば、外れ値への堅牢性や予測不確実性を明示的にモデル化せずに決定論的マッピングを学習する。
Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC) という新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T15:22:35Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Statistical Agnostic Mapping: a Framework in Neuroimaging based on
Concentration Inequalities [0.0]
ボクセルやマルチボクセルレベルでの統計アグノスティック(非パラメトリック)マッピングを導出する。
集中不平等に基づくニューロイメージングの新しい枠組みを提案する。
論文 参考訳(メタデータ) (2019-12-27T18:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。