論文の概要: Quantifying Statistical Significance in Diffusion-Based Anomaly Localization via Selective Inference
- arxiv url: http://arxiv.org/abs/2402.11789v4
- Date: Thu, 22 May 2025 18:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.368946
- Title: Quantifying Statistical Significance in Diffusion-Based Anomaly Localization via Selective Inference
- Title(参考訳): 拡散型異常局在の選択的推論による統計的意義の定量化
- Authors: Teruyuki Katsuoka, Tomohiro Shiraishi, Daiki Miwa, Vo Nguyen Le Duy, Ichiro Takeuchi,
- Abstract要約: 画像の異常な局所化(期待されるパターンから逸脱する領域)は、診断や産業検査などの応用において不可欠である。
最近のトレンドは、画像生成モデルを用いて異常な局所化を行い、それらのモデルが正常に見える異常な画像を生成することである。
本稿では,検出された異常領域の意義を定量化するために,選択推論に基づく統計的枠組みを提案する。
- 参考スコア(独自算出の注目度): 19.927066428010782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly localization in images (identifying regions that deviate from expected patterns) is vital in applications such as medical diagnosis and industrial inspection. A recent trend is the use of image generation models in anomaly localization, where these models generate normal-looking counterparts of anomalous images, thereby allowing flexible and adaptive anomaly localization. However, these methods inherit the uncertainty and bias implicitly embedded in the employed generative model, raising concerns about the reliability. To address this, we propose a statistical framework based on selective inference to quantify the significance of detected anomalous regions. Our method provides $p$-values to assess the false positive detection rates, providing a principled measure of reliability. As a proof of concept, we consider anomaly localization using a diffusion model and its applications to medical diagnoses and industrial inspections. The results indicate that the proposed method effectively controls the risk of false positive detection, supporting its use in high-stakes decision-making tasks.
- Abstract(参考訳): 画像の異常な局所化(期待されるパターンから逸脱する領域)は、診断や産業検査などの応用において不可欠である。
最近のトレンドは、画像生成モデルを用いた異常局所化であり、これらのモデルが正常に見える異常画像を生成することにより、柔軟で適応的な異常局所化を可能にする。
しかし、これらの手法は、採用した生成モデルに暗黙的に埋め込まれた不確実性と偏見を継承し、信頼性に関する懸念を提起する。
そこで本研究では,検出された異常領域の意義を定量化するために,選択推論に基づく統計的枠組みを提案する。
本手法は偽陽性検出率を評価するために$p$-valuesを提供し,信頼性の原理的尺度を提供する。
概念実証として,拡散モデルを用いた異常な局所化とその診断・産業検査への応用について考察する。
その結果,提案手法は偽陽性検出のリスクを効果的に制御し,高精度な意思決定タスクでの使用を支援することが示唆された。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
我々は,脳MRIと胸部X線による3つの時系列的ベンチマークデータセットを用いて,対物画像生成法について検討した。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
本稿では,誤用と関連するリスクを軽減するために,予測不確実性を利用してAI生成画像を検出する新しい手法を提案する。
この動機は、自然画像とAI生成画像の分布差に関する基本的な仮定から生じる。
本稿では,AI生成画像の検出スコアとして,大規模事前学習モデルを用いて不確実性を計算することを提案する。
論文 参考訳(メタデータ) (2024-12-08T11:32:25Z) - Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
拡散モデルに基づく新しい教師なし異常検出フレームワークを提案する。
提案手法は, 合成ノイズ関数と多段拡散過程を組み込む。
提案手法は頸動脈US,脳MRI,肝CTを用いて検討した。
論文 参考訳(メタデータ) (2024-11-06T15:43:51Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
異常検出は、データセットの大部分から著しく逸脱する非定型的なデータサンプルを特定するプロセスである。
医用画像から抽出した特徴量の密度を推定し,拡散モードに基づく新しい異常検出手法を提案する。
提案手法は異常を識別するだけでなく,画像レベルと画素レベルでの解釈性も提供する。
論文 参考訳(メタデータ) (2023-10-10T08:44:47Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
本稿では拡散生成画像検出(SeDID)のためのステップワイド誤差と呼ばれる新しい検出法を提案する。
SeDIDは拡散モデルのユニークな特性、すなわち決定論的逆転と決定論的逆退誤差を利用する。
我々の研究は拡散モデル生成画像の識別に重要な貢献をしており、人工知能のセキュリティ分野における重要なステップとなっている。
論文 参考訳(メタデータ) (2023-07-12T16:16:37Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
病理脳病変は脳画像に多彩な外観を示す。
正規データのみを用いた教師なし異常検出手法が提案されている。
空間分解能の最適化と雑音の大きさの最適化により,異なるモデル学習体制の性能が向上することを示す。
論文 参考訳(メタデータ) (2023-01-19T21:39:38Z) - Image-to-Image Regression with Distribution-Free Uncertainty
Quantification and Applications in Imaging [88.20869695803631]
真値を含むことが保証される各画素の周囲の不確実な間隔を導出する方法を示す。
画像から画像への回帰を3つのタスクで評価する。
論文 参考訳(メタデータ) (2022-02-10T18:59:56Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
unpaired image-to-image translationは、教師なしの方法で画像ドメイン間のマッピングを学ぶことを指す。
既存の手法はしばしば、外れ値への堅牢性や予測不確実性を明示的にモデル化せずに決定論的マッピングを学習する。
Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC) という新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T15:22:35Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Statistical Agnostic Mapping: a Framework in Neuroimaging based on
Concentration Inequalities [0.0]
ボクセルやマルチボクセルレベルでの統計アグノスティック(非パラメトリック)マッピングを導出する。
集中不平等に基づくニューロイメージングの新しい枠組みを提案する。
論文 参考訳(メタデータ) (2019-12-27T18:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。