論文の概要: WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More
- arxiv url: http://arxiv.org/abs/2402.12065v2
- Date: Tue, 20 Feb 2024 08:48:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 11:27:58.843634
- Title: WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More
- Title(参考訳): WKVQuant: 大規模言語モデルのためのウェイトとキー/バリューキャッシュの定量化
- Authors: Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu,
Liqiang Nie
- Abstract要約: 大規模言語モデル (LLM) は、そのメモリ要求と自動回帰テキスト生成プロセスの計算要求のために、重要なデプロイメント課題に直面している。
本稿では、モデルパラメータとアクティベーションを低ビット整数に変換することでメモリ消費を低減する手法であるLCMの量子化に着目し、これらの課題に対処する。
- 参考スコア(独自算出の注目度): 55.0856305773081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) face significant deployment challenges due to
their substantial memory requirements and the computational demands of
auto-regressive text generation process. This paper addresses these challenges
by focusing on the quantization of LLMs, a technique that reduces memory
consumption by converting model parameters and activations into low-bit
integers. We critically analyze the existing quantization approaches,
identifying their limitations in balancing the accuracy and efficiency of the
quantized LLMs. To advance beyond these limitations, we propose WKVQuant, a PTQ
framework especially designed for quantizing weights and the key/value (KV)
cache of LLMs. Specifically, we incorporates past-only quantization to improve
the computation of attention. Additionally, we introduce two-dimensional
quantization strategy to handle the distribution of KV cache, along with a
cross-block reconstruction regularization for parameter optimization.
Experiments show that WKVQuant achieves almost comparable memory savings to
weight-activation quantization, while also approaching the performance of
weight-only quantization.
- Abstract(参考訳): 大規模言語モデル (LLM) は、そのメモリ要求と自動回帰テキスト生成プロセスの計算要求のために、重要なデプロイメント課題に直面している。
本稿では,モデルパラメータとアクティベーションを低ビット整数に変換することでメモリ消費を削減する手法であるllmsの量子化に注目する。
我々は,既存の量子化手法を批判的に分析し,量子化llmの精度と効率のバランスの限界を明らかにする。
これらの制限を超えて、特に重みの定量化とLLMのキー/値(KV)キャッシュのためのPTQフレームワークであるWKVQuantを提案する。
具体的には,過去の量子化を取り入れ,注意の計算性を向上させる。
さらに,kvキャッシュの分散を扱うための2次元量子化戦略とパラメータ最適化のためのクロスブロック再構成正規化を導入する。
実験により、WKVQuantはウェイトアクティベーション量子化にほぼ同等のメモリセーブを実現し、ウェイトオンリー量子化の性能に近づいた。
関連論文リスト
- AsymKV: Enabling 1-Bit Quantization of KV Cache with Layer-Wise Asymmetric Quantization Configurations [36.63586957377984]
大規模な言語モデルは、しばしばかなりのストレージスペースを必要とする。
パラメータ数が膨大であるため、これらのモデルは大きなストレージスペースを必要とすることが多い。
1つの研究方向は、浮動小数点数の整数置換を用いてモデルを圧縮することを提案する。
論文 参考訳(メタデータ) (2024-10-17T04:35:57Z) - Channel-Wise Mixed-Precision Quantization for Large Language Models [47.00361921910259]
大規模言語モデル(LLM)は、幅広い言語タスクで顕著な成功を収めている。
重みのみの量子化は、LCMのメモリフットプリントを削減するための有望な解決策である。
本稿では,CMPQ(Channel-Wise Mixed-Precision Quantization)を提案する。
論文 参考訳(メタデータ) (2024-10-16T21:34:41Z) - QSpec: Speculative Decoding with Complementary Quantization Schemes [37.007621357142725]
量子化は、推論を加速し、大きな言語モデルのメモリ消費を減らすために、実質的に採用されている。
本稿では、投機的復号化のための2つの相補的量子化スキームをシームレスに統合するQSPECと呼ばれる新しい量子化パラダイムを提案する。
QSPECは、品質上の妥協なしにトークン生成スループットを最大1.80倍向上させる。
論文 参考訳(メタデータ) (2024-10-15T05:57:51Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - ApiQ: Finetuning of 2-Bit Quantized Large Language Model [12.328293460903911]
ApiQは、LoRAコンポーネントを並列に初期化し、LLMの重みを定量化することで、失われた情報を量子化から復元するように設計されている。
様々なビット幅にわたって優れた微調整結果が得られる。
論文 参考訳(メタデータ) (2024-02-07T09:36:54Z) - PB-LLM: Partially Binarized Large Language Models [14.244537605866864]
本稿では,Large Language Models (LLMs) 圧縮のために,モデル重みを1ビットに圧縮するネットワークバイナライゼーションについて検討する。
本稿では,LLMの言語的推論能力を維持しつつ,極端に低ビットの量子化を実現する手法として,PB-LLM(Partial-Binarized LLM)を提案する。
論文 参考訳(メタデータ) (2023-09-29T14:35:27Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。