Generating Survival Interpretable Trajectories and Data
- URL: http://arxiv.org/abs/2402.12331v1
- Date: Mon, 19 Feb 2024 18:02:10 GMT
- Title: Generating Survival Interpretable Trajectories and Data
- Authors: Andrei V. Konstantinov, Stanislav R. Kirpichenko, Lev V. Utkin
- Abstract summary: The paper demonstrates the efficiency and properties of the proposed model using numerical experiments on synthetic and real datasets.
The code of the algorithm implementing the proposed model is publicly available.
- Score: 2.4861619769660637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new model for generating survival trajectories and data based on applying
an autoencoder of a specific structure is proposed. It solves three tasks.
First, it provides predictions in the form of the expected event time and the
survival function for a new generated feature vector on the basis of the Beran
estimator. Second, the model generates additional data based on a given
training set that would supplement the original dataset. Third, the most
important, it generates a prototype time-dependent trajectory for an object,
which characterizes how features of the object could be changed to achieve a
different time to an event. The trajectory can be viewed as a type of the
counterfactual explanation. The proposed model is robust during training and
inference due to a specific weighting scheme incorporating into the variational
autoencoder. The model also determines the censored indicators of new generated
data by solving a classification task. The paper demonstrates the efficiency
and properties of the proposed model using numerical experiments on synthetic
and real datasets. The code of the algorithm implementing the proposed model is
publicly available.
Related papers
- Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
We introduce a task called component modeling.
The goal of component modeling is to decompose an ML model's prediction in terms of its components.
We present COAR, a scalable algorithm for estimating component attributions.
arXiv Detail & Related papers (2024-04-17T16:28:08Z) - Data-Free Model Extraction Attacks in the Context of Object Detection [0.6719751155411076]
A significant number of machine learning models are vulnerable to model extraction attacks.
We propose an adversary black box attack extending to a regression problem for predicting bounding box coordinates in object detection.
We find that the proposed model extraction method achieves significant results by using reasonable queries.
arXiv Detail & Related papers (2023-08-09T06:23:54Z) - Learning Active Subspaces and Discovering Important Features with Gaussian Radial Basis Functions Neural Networks [0.0]
We show that precious information is contained in the spectrum of the precision matrix that can be extracted once the training of the model is completed.
We conducted numerical experiments for regression, classification, and feature selection tasks.
Our results demonstrate that the proposed model does not only yield an attractive prediction performance compared to the competitors.
arXiv Detail & Related papers (2023-07-11T09:54:30Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
Counterfactual explanation is a class of methods to make local explanations of machine learning decisions.
We present VCNet-Variational Counter Net, a model architecture that combines a predictor and a counterfactual generator.
We show that VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem.
arXiv Detail & Related papers (2022-12-21T08:45:32Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - A Single Example Can Improve Zero-Shot Data Generation [7.237231992155901]
Sub-tasks of intent classification require extensive and flexible datasets for experiments and evaluation.
We propose to use text generation methods to gather datasets.
We explore two approaches to generating task-oriented utterances.
arXiv Detail & Related papers (2021-08-16T09:43:26Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Machine learning with incomplete datasets using multi-objective
optimization models [1.933681537640272]
We propose an online approach to handle missing values while a classification model is learnt.
We develop a multi-objective optimization model with two objective functions for imputation and model selection.
We use an evolutionary algorithm based on NSGA II to find the optimal solutions.
arXiv Detail & Related papers (2020-12-04T03:44:33Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.