論文の概要: LoRA+: Efficient Low Rank Adaptation of Large Models
- arxiv url: http://arxiv.org/abs/2402.12354v1
- Date: Mon, 19 Feb 2024 18:33:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 15:12:02.127033
- Title: LoRA+: Efficient Low Rank Adaptation of Large Models
- Title(参考訳): LoRA+:大規模モデルの効率的な低ランク適応
- Authors: Soufiane Hayou, Nikhil Ghosh, Bin Yu
- Abstract要約: 低ランク適応(LoRA)は,大幅モデル(埋め込み次元)の最適下微細化につながることを示す。
そこで, このLoRAの準最適性は, 適応行列 A と B の学習率を良好に設定することで, 簡単に補正可能であることを示す。
我々の実験では、LoRA$+$は、LoRAと同じ計算コストで性能(1-2$%の改善)と微調整速度($sim$2X SpeedUpまで)を改善する。
- 参考スコア(独自算出の注目度): 14.694225779909477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we show that Low Rank Adaptation (LoRA) as originally
introduced in Hu et al. (2021) leads to suboptimal finetuning of models with
large width (embedding dimension). This is due to the fact that adapter
matrices A and B in LoRA are updated with the same learning rate. Using scaling
arguments for large width networks, we demonstrate that using the same learning
rate for A and B does not allow efficient feature learning. We then show that
this suboptimality of LoRA can be corrected simply by setting different
learning rates for the LoRA adapter matrices A and B with a well-chosen ratio.
We call this proposed algorithm LoRA$+$. In our extensive experiments, LoRA$+$
improves performance (1-2 $\%$ improvements) and finetuning speed (up to $\sim$
2X SpeedUp), at the same computational cost as LoRA.
- Abstract(参考訳): 本稿では,Hu et al. (2021) で最初に導入されたローランク適応 (LoRA) が,大きな幅(埋め込み次元)を持つモデルの最適下微細化につながることを示す。
これは、LoRAのアダプタ行列AとBが同じ学習率で更新されるためである。
広帯域ネットワークのスケーリング引数を用いて、AとBの学習率と同じで効率的な特徴学習ができないことを示す。
そこで, このLoRAの準最適性は, 適応行列 A と B の学習率を良好に設定することで簡単に補正できることを示す。
このアルゴリズムをLoRA$+$と呼ぶ。
我々の大規模な実験では、LoRA$+$はパフォーマンス(1-2$\%$改善)と微調整速度(最大$\sim$2X SpeedUp)を、LoRAと同じ計算コストで改善する。
関連論文リスト
- LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization [78.93425154518705]
低ランク適応 (LoRA) は、メモリ要求を低減し、LLMのパラメータ効率の高い微調整法である。
本稿では,LoRA最適化のための適応行列プレコンディショニング手法であるLoRA-RITEを紹介する。
論文 参考訳(メタデータ) (2024-10-27T22:57:12Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - CoRA: Optimizing Low-Rank Adaptation with Common Subspace of Large Language Models [7.108651381160281]
Low-Rank Adaptation (LoRA) 戦略は、微調整された大型モデルにおける効率と性能のバランスをとる。
我々は、共有知識を活用してLoRAトレーニングを最適化するtextbfCoRAを提案する。
実験の結果,最初のアプローチは,パラメータの半減よりも効率が良く,元のLoRAファインチューニングと同じ効果が得られることがわかった。
論文 参考訳(メタデータ) (2024-08-31T12:48:27Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - LoRA Learns Less and Forgets Less [25.09261710396838]
Low-Rank Adaptation (LoRA) は、大規模言語モデルのパラメータ効率の高い微調整法である。
プログラムと数学の2つの対象領域におけるLoRAの性能と完全な微調整を比較した。
論文 参考訳(メタデータ) (2024-05-15T19:27:45Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
低ランク適応(LoRA)の改良フレームワークであるResLoRAを提案する。
提案手法は,LoRAと比較してトレーニング可能なパラメータや推論コストを必要とせずに,より少ないトレーニングステップでより良い結果を得ることができる。
NLG,NLU,テキスト・ツー・イメージタスクの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-28T04:33:20Z) - DoRA: Weight-Decomposed Low-Rank Adaptation [57.68678247436207]
本稿では,FTとLoRAの相違点を明らかにするために,新しい重み分解解析法を提案する。
本研究は、FTの学習能力に類似することを目的として、重量分解低ランク適応(DoRA)を提案する。
DoRAは、事前訓練された重量を、微調整のための大きさと方向の2つの構成要素に分解する。
論文 参考訳(メタデータ) (2024-02-14T17:59:34Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
本稿では,Frank-Wolfeアルゴリズムにインスパイアされた反復最適化フレームワークであるLoRAのChainを紹介する。
計算コストやメモリコストを増大させることなく,COLA が LoRA を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-01-08T14:26:49Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRAは、線形層に低ランクアダプタを導入することにより、ニューラルネットワーク内のトレーニング可能なパラメータの数を減らすテクニックである。
本稿では,LoRAの効率的な実装のためのRunLoRAフレームワークを提案する。
実験は、言語モデリングネットワーク上で最大28%のスピードアップを示す。
論文 参考訳(メタデータ) (2023-12-06T10:54:34Z) - NOLA: Compressing LoRA using Linear Combination of Random Basis [22.76088132446952]
我々は、ロラに存在するランク1の下界を克服するNOLAを導入する。
NOLAは、ランク1のLoRAと比較してパラメータ数がはるかに少ないLoRAモデルと同様に、最高の圧縮LoRAをアーカイブできる。
論文 参考訳(メタデータ) (2023-10-04T03:30:24Z) - LoRA-FA: Memory-efficient Low-rank Adaptation for Large Language Models
Fine-tuning [19.08716369943138]
本稿では,性能劣化やコストのかかる再計算を伴わずに,メモリ効率のよい微調整法であるLoRA-FAを提案する。
この結果から,LORA-FAは全パラメータの微調整やLORAと比較して,各タスクにまたがる精密調整の精度が常に高いことがわかった。
論文 参考訳(メタデータ) (2023-08-07T05:12:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。