Vehicle-group-based Crash Risk Prediction and Interpretation on Highways
- URL: http://arxiv.org/abs/2402.12415v2
- Date: Mon, 27 Jan 2025 01:51:26 GMT
- Title: Vehicle-group-based Crash Risk Prediction and Interpretation on Highways
- Authors: Tianheng Zhu, Ling Wang, Yiheng Feng, Wanjing Ma, Mohamed Abdel-Aty,
- Abstract summary: This study investigates a new vehicle group based risk analysis method and explores risk evolution mechanisms considering VG features.
An impact-based vehicle grouping method is proposed to cluster vehicles into VGs by evaluating their responses to the erratic behaviors of nearby vehicles.
A Logistic Regression and a Graph Neural Network (GNN) are then employed to predict VG risks using aggregated and disaggregated VG information.
- Score: 8.703173025279431
- License:
- Abstract: Previous studies in predicting crash risks primarily associated the number or likelihood of crashes on a road segment with traffic parameters or geometric characteristics, usually neglecting the impact of vehicles' continuous movement and interactions with nearby vehicles. Recent technology advances, such as Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs) are able to collect high-resolution trajectory data, which enables trajectory-based risk analysis. This study investigates a new vehicle group (VG) based risk analysis method and explores risk evolution mechanisms considering VG features. An impact-based vehicle grouping method is proposed to cluster vehicles into VGs by evaluating their responses to the erratic behaviors of nearby vehicles. The risk of a VG is aggregated based on the risk between each vehicle pair in the VG, measured by inverse Time-to-Collision (iTTC). A Logistic Regression and a Graph Neural Network (GNN) are then employed to predict VG risks using aggregated and disaggregated VG information. Both methods achieve excellent performance with AUC values exceeding 0.93. For the GNN model, GNNExplainer with feature perturbation is applied to identify critical individual vehicle features and their directional impact on VG risks. Overall, this research contributes a new perspective for identifying, predicting, and interpreting traffic risks.
Related papers
- A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.
Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.
This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Automated Vehicles at Unsignalized Intersections: Safety and Efficiency Implications of Mixed-Human-Automated Traffic [6.9492069439607995]
The integration of automated vehicles (AVs) into transportation systems presents an unprecedented opportunity to enhance road safety and efficiency.
This study aims to bridge the gap by examining behavioral differences and adaptations of AVs and human-driven vehicles (HVs) at unsignalized intersections.
The findings reveal a paradox in mixed traffic flow: while AVs maintain larger safety margins, their conservative behavior can lead to unexpected situations for human drivers.
arXiv Detail & Related papers (2024-10-16T13:19:32Z) - Mitigating Vulnerable Road Users Occlusion Risk Via Collective Perception: An Empirical Analysis [0.0]
We present a novel algorithm that quantifies occlusion risk based on the dynamics of both vehicles and VRUs.
Our study extends to examining the role of the Collective Perception Service (CPS) in VRU safety.
arXiv Detail & Related papers (2024-04-11T13:54:15Z) - Risk-anticipatory autonomous driving strategies considering vehicles' weights, based on hierarchical deep reinforcement learning [12.014977175887767]
This study develops an autonomous driving strategy based on risk anticipation, considering the weights of surrounding vehicles.
A risk indicator integrating surrounding vehicles weights, based on the risk field theory, is proposed and incorporated into autonomous driving decisions.
An indicator, potential collision energy in conflicts, is newly proposed to evaluate the performance of the developed AV driving strategy.
arXiv Detail & Related papers (2023-12-27T06:03:34Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
We propose a comprehensive driving risk management framework named RCP-RF based on potential field theory under Connected and Automated Vehicles (CAV) environment.
Different from existing algorithms, the motion tendency between ego and obstacle cars and the pedestrian factor are legitimately considered in the proposed framework.
Empirical studies validate the superiority of our proposed framework against state-of-the-art methods on real-world dataset NGSIM and real AV platform.
arXiv Detail & Related papers (2023-05-04T01:54:37Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.