Vehicle-group-based Crash Risk Prediction and Interpretation on Highways
- URL: http://arxiv.org/abs/2402.12415v2
- Date: Mon, 27 Jan 2025 01:51:26 GMT
- Title: Vehicle-group-based Crash Risk Prediction and Interpretation on Highways
- Authors: Tianheng Zhu, Ling Wang, Yiheng Feng, Wanjing Ma, Mohamed Abdel-Aty,
- Abstract summary: This study investigates a new vehicle group based risk analysis method and explores risk evolution mechanisms considering VG features.<n>An impact-based vehicle grouping method is proposed to cluster vehicles into VGs by evaluating their responses to the erratic behaviors of nearby vehicles.<n>A Logistic Regression and a Graph Neural Network (GNN) are then employed to predict VG risks using aggregated and disaggregated VG information.
- Score: 8.703173025279431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous studies in predicting crash risks primarily associated the number or likelihood of crashes on a road segment with traffic parameters or geometric characteristics, usually neglecting the impact of vehicles' continuous movement and interactions with nearby vehicles. Recent technology advances, such as Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs) are able to collect high-resolution trajectory data, which enables trajectory-based risk analysis. This study investigates a new vehicle group (VG) based risk analysis method and explores risk evolution mechanisms considering VG features. An impact-based vehicle grouping method is proposed to cluster vehicles into VGs by evaluating their responses to the erratic behaviors of nearby vehicles. The risk of a VG is aggregated based on the risk between each vehicle pair in the VG, measured by inverse Time-to-Collision (iTTC). A Logistic Regression and a Graph Neural Network (GNN) are then employed to predict VG risks using aggregated and disaggregated VG information. Both methods achieve excellent performance with AUC values exceeding 0.93. For the GNN model, GNNExplainer with feature perturbation is applied to identify critical individual vehicle features and their directional impact on VG risks. Overall, this research contributes a new perspective for identifying, predicting, and interpreting traffic risks.
Related papers
- STRAP: Spatial-Temporal Risk-Attentive Vehicle Trajectory Prediction for Autonomous Driving [0.968535561940627]
We propose a novel spatial-temporal risk-attentive trajectory prediction framework that incorporates a risk potential field.<n>The proposed framework provides interpretable, risk-aware predictions, contributing to more robust decision-making for autonomous driving systems.
arXiv Detail & Related papers (2025-07-11T13:05:35Z) - Overtake Detection in Trucks Using CAN Bus Signals: A Comparative Study of Machine Learning Methods [51.28632782308621]
We focus on overtake detection using Controller Area Network (CAN) bus data collected from five in-service trucks provided by the Volvo Group.<n>We evaluate three common classifiers for vehicle manoeuvre detection, Artificial Neural Networks (ANN), Random Forest (RF), and Support Vector Machines (SVM)<n>Our pertruck analysis also reveals that classification accuracy, especially for overtakes, depends on the amount of training data per vehicle.
arXiv Detail & Related papers (2025-07-01T09:20:41Z) - NsBM-GAT: A Non-stationary Block Maximum and Graph Attention Framework for General Traffic Crash Risk Prediction [11.444259609536164]
Existing crash risk prediction models rely on hypothetical scenarios deemed dangerous by researchers.
Dashcam videos capture the pre-crash behavior of individual vehicles, but they often lack critical information about the movements of surrounding vehicles.
We propose a novel non-stationary extreme value theory (EVT) to capture the interactive behavior between a vehicle and its surrounding vehicles.
arXiv Detail & Related papers (2025-03-06T02:12:40Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - Automated Vehicles at Unsignalized Intersections: Safety and Efficiency Implications of Mixed-Human-Automated Traffic [6.9492069439607995]
The integration of automated vehicles (AVs) into transportation systems presents an unprecedented opportunity to enhance road safety and efficiency.
This study aims to bridge the gap by examining behavioral differences and adaptations of AVs and human-driven vehicles (HVs) at unsignalized intersections.
The findings reveal a paradox in mixed traffic flow: while AVs maintain larger safety margins, their conservative behavior can lead to unexpected situations for human drivers.
arXiv Detail & Related papers (2024-10-16T13:19:32Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Context-Aware Quantitative Risk Assessment Machine Learning Model for
Drivers Distraction [0.0]
Multi-Class Driver Distraction Risk Assessment (MDDRA) model considers the vehicle, driver, and environmental data during a journey.
MDDRA categorises the driver on a risk matrix as safe, careless, or dangerous.
We apply machine learning techniques to classify and predict driver distraction according to severity levels.
arXiv Detail & Related papers (2024-02-20T23:20:36Z) - Risk-anticipatory autonomous driving strategies considering vehicles' weights, based on hierarchical deep reinforcement learning [12.014977175887767]
This study develops an autonomous driving strategy based on risk anticipation, considering the weights of surrounding vehicles.
A risk indicator integrating surrounding vehicles weights, based on the risk field theory, is proposed and incorporated into autonomous driving decisions.
An indicator, potential collision energy in conflicts, is newly proposed to evaluate the performance of the developed AV driving strategy.
arXiv Detail & Related papers (2023-12-27T06:03:34Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.
To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.
Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.
RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
We propose a comprehensive driving risk management framework named RCP-RF based on potential field theory under Connected and Automated Vehicles (CAV) environment.
Different from existing algorithms, the motion tendency between ego and obstacle cars and the pedestrian factor are legitimately considered in the proposed framework.
Empirical studies validate the superiority of our proposed framework against state-of-the-art methods on real-world dataset NGSIM and real AV platform.
arXiv Detail & Related papers (2023-05-04T01:54:37Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
Risk assessment is a central element for the development and validation of Autonomous Vehicles.
Time Headway (TH) and Time-To-Contact (TTC) are commonly used risk metrics and have qualitative relations to occurrence probability.
We present a probabilistic situation risk model based on survival analysis considerations and extend it to naturally incorporate sensory, temporal and behavioral uncertainties.
arXiv Detail & Related papers (2023-03-13T15:22:51Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
This study introduces a new concept of a pedestrian safety system that combines the field and the centralized processes.
The system can warn of upcoming risks immediately in the field and improve the safety of risk frequent areas by assessing the safety levels of roads without actual collisions.
arXiv Detail & Related papers (2021-07-26T23:00:56Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.