Dynamics of quantum coherence in many-body localized systems
- URL: http://arxiv.org/abs/2402.12698v2
- Date: Wed, 18 Sep 2024 10:00:51 GMT
- Title: Dynamics of quantum coherence in many-body localized systems
- Authors: Jin-Jun Chen, Kai Xu, Li-Hang Ren, Yu-Ran Zhang, Heng Fan,
- Abstract summary: We show that quantum coherence serves as an effective probe for identifying dephasing, which is a distinctive signature of many-body localization (MBL)
Our results provide insights into understanding many-body dephasing phenomena in MBL systems and propose a novel feasible method for identifying and characterizing MBL phases in experiments.
- Score: 12.780646296022812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that the dynamics of quantum coherence serves as an effective probe for identifying dephasing, which is a distinctive signature of many-body localization (MBL). Quantum coherence can be utilized to measure both the local coherence of specific subsystems and the total coherence of the whole system in a consistent manner. Our results reveal that the local coherence of small subsystems decays over time following a power law in the MBL phase, while it reaches a stable value within the same time window in the Anderson localized (AL) phase. In contrast, the total coherence of the whole system exhibits logarithmic growth during the MBL phase and reaches a stable value in the AL phase. Notably, this dynamic characteristic of quantum coherence remains robust even with weak interactions and displays unbounded behavior in infinite systems. Our results provide insights into understanding many-body dephasing phenomena in MBL systems and propose a novel feasible method for identifying and characterizing MBL phases in experiments.
Related papers
- Measurement-invisible quantum correlations in scrambling dynamics [0.0]
We show there can exist three distinct dynamical phases characterised by qualitatively different forms of quantum correlations between two subsystems.
We reveal a new phase transition within the entangled phase which separates phases wherein the quantum correlations are invisible or visible to measurements on one of the subsystems.
Our results have implications for the kind of tasks that can be performed using measurement feedback within the framework of quantum interactive dynamics.
arXiv Detail & Related papers (2024-10-31T17:59:28Z) - State Dependent Spread Complexity Dynamics in Many-Body Localization Transition [0.0]
We characterize the Many-Body Localization (MBL) phase transition using the dynamics of spread complexity and inverse participation ratio in the Krylov space.
Our work sheds light on the efficacy of Krylov space dynamics in understanding phase transitions in quantum many-body systems.
arXiv Detail & Related papers (2024-09-03T18:00:11Z) - Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quantum critical behaviors and decoherence of weakly coupled quantum
Ising models within an isolated global system [0.0]
We study the dependence of its quantum correlations and decoherence rate on the state of the weakly-coupled complementary part E.
In particular, different scaling behaviors, depending on the state of E, are observed for the decoherence of the subsystem S.
arXiv Detail & Related papers (2022-09-14T09:54:02Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Characterizing many-body localization via exact disorder-averaged
quantum noise [0.0]
Many-body localized (MBL) phases of disordered quantum many-particle systems have a number of unique properties.
We characterize the quantum noise that a disordered spin system exerts on its parts via an influence matrix (IM)
Viewed as a wavefunction in the space of trajectories of an individual spin, the IM exhibits slow scaling of temporal entanglement in the MBL phase.
arXiv Detail & Related papers (2020-12-01T19:01:31Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.