BioPose: Biomechanically-accurate 3D Pose Estimation from Monocular Videos
- URL: http://arxiv.org/abs/2501.07800v1
- Date: Tue, 14 Jan 2025 02:56:19 GMT
- Title: BioPose: Biomechanically-accurate 3D Pose Estimation from Monocular Videos
- Authors: Farnoosh Koleini, Muhammad Usama Saleem, Pu Wang, Hongfei Xue, Ahmed Helmy, Abbey Fenwick,
- Abstract summary: BioPose is a learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos.
It includes a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique.
Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods.
- Score: 6.280386490530478
- License:
- Abstract: Recent advancements in 3D human pose estimation from single-camera images and videos have relied on parametric models, like SMPL. However, these models oversimplify anatomical structures, limiting their accuracy in capturing true joint locations and movements, which reduces their applicability in biomechanics, healthcare, and robotics. Biomechanically accurate pose estimation, on the other hand, typically requires costly marker-based motion capture systems and optimization techniques in specialized labs. To bridge this gap, we propose BioPose, a novel learning-based framework for predicting biomechanically accurate 3D human pose directly from monocular videos. BioPose includes three key components: a Multi-Query Human Mesh Recovery model (MQ-HMR), a Neural Inverse Kinematics (NeurIK) model, and a 2D-informed pose refinement technique. MQ-HMR leverages a multi-query deformable transformer to extract multi-scale fine-grained image features, enabling precise human mesh recovery. NeurIK treats the mesh vertices as virtual markers, applying a spatial-temporal network to regress biomechanically accurate 3D poses under anatomical constraints. To further improve 3D pose estimations, a 2D-informed refinement step optimizes the query tokens during inference by aligning the 3D structure with 2D pose observations. Experiments on benchmark datasets demonstrate that BioPose significantly outperforms state-of-the-art methods. Project website: \url{https://m-usamasaleem.github.io/publication/BioPose/BioPose.html}.
Related papers
- SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views [36.02533658048349]
We propose a novel method, SpaRP, to reconstruct a 3D textured mesh and estimate the relative camera poses for sparse-view images.
SpaRP distills knowledge from 2D diffusion models and finetunes them to implicitly deduce the 3D spatial relationships between the sparse views.
It requires only about 20 seconds to produce a textured mesh and camera poses for the input views.
arXiv Detail & Related papers (2024-08-19T17:53:10Z) - 3D Kinematics Estimation from Video with a Biomechanical Model and
Synthetic Training Data [4.130944152992895]
We propose a novel biomechanics-aware network that directly outputs 3D kinematics from two input views.
Our experiments demonstrate that the proposed approach, only trained on synthetic data, outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2024-02-20T17:33:40Z) - Cloth2Body: Generating 3D Human Body Mesh from 2D Clothing [54.29207348918216]
Cloth2Body needs to address new and emerging challenges raised by the partial observation of the input and the high diversity of the output.
We propose an end-to-end framework that can accurately estimate 3D body mesh parameterized by pose and shape from a 2D clothing image.
As shown by experimental results, the proposed framework achieves state-of-the-art performance and can effectively recover natural and diverse 3D body meshes from 2D images.
arXiv Detail & Related papers (2023-09-28T06:18:38Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - EVOPOSE: A Recursive Transformer For 3D Human Pose Estimation With
Kinematic Structure Priors [72.33767389878473]
We propose a transformer-based model EvoPose to introduce the human body prior knowledge for 3D human pose estimation effectively.
A Structural Priors Representation (SPR) module represents human priors as structural features carrying rich body patterns.
A Recursive Refinement (RR) module is applied to the 3D pose outputs by utilizing estimated results and further injects human priors simultaneously.
arXiv Detail & Related papers (2023-06-16T04:09:16Z) - HybrIK-X: Hybrid Analytical-Neural Inverse Kinematics for Whole-body
Mesh Recovery [40.88628101598707]
This paper presents a novel hybrid inverse kinematics solution, HybrIK, that integrates 3D keypoint estimation and body mesh recovery.
HybrIK directly transforms accurate 3D joints to body-part rotations via twist-and-swing decomposition.
We further develop a holistic framework, HybrIK-X, which enhances HybrIK with articulated hands and an expressive face.
arXiv Detail & Related papers (2023-04-12T08:29:31Z) - Neural Monocular 3D Human Motion Capture with Physical Awareness [76.55971509794598]
We present a new trainable system for physically plausible markerless 3D human motion capture.
Unlike most neural methods for human motion capture, our approach is aware of physical and environmental constraints.
It produces smooth and physically principled 3D motions in an interactive frame rate in a wide variety of challenging scenes.
arXiv Detail & Related papers (2021-05-03T17:57:07Z) - PC-HMR: Pose Calibration for 3D Human Mesh Recovery from 2D
Images/Videos [47.601288796052714]
We develop two novel Pose frameworks, i.e., Serial PC-HMR and Parallel PC-HMR.
Our frameworks are based on generic and complementary integration of data-driven learning and geometrical modeling.
We perform extensive experiments on the popular bench-marks, i.e., Human3.6M, 3DPW and SURREAL, where our PC-HMR frameworks achieve the SOTA results.
arXiv Detail & Related papers (2021-03-16T12:12:45Z) - HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D
Human Pose and Shape Estimation [39.67289969828706]
We propose a novel hybrid inverse kinematics solution (HybrIK) to bridge the gap between body mesh estimation and 3D keypoint estimation.
HybrIK directly transforms accurate 3D joints to relative body-part rotations for 3D body mesh reconstruction.
We show that HybrIK preserves both the accuracy of 3D pose and the realistic body structure of the parametric human model.
arXiv Detail & Related papers (2020-11-30T10:32:30Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.