What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents
- URL: http://arxiv.org/abs/2402.13184v5
- Date: Wed, 01 Jan 2025 23:34:53 GMT
- Title: What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents
- Authors: Zhaoqian Xue, Mingyu Jin, Beichen Wang, Suiyuan Zhu, Kai Mei, Hua Tang, Wenyue Hua, Mengnan Du, Yongfeng Zhang,
- Abstract summary: This study introduces "CosmoAgent," an innovative artificial intelligence system that utilizes Large Language Models (LLMs) to simulate complex interactions between human and extraterrestrial civilizations.<n>Through this methodology, our study quantitatively analyzes the growth trajectories of civilizations, providing insights into future decision-making at critical points of growth and saturation.<n>This innovative research not only introduces a novel method for comprehending potential inter-civilizational dynamics but also holds practical value in enabling entities with divergent value systems to strategize, prevent conflicts, and engage in games under asymmetric information.
- Score: 40.14152484201402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces "CosmoAgent," an innovative artificial intelligence system that utilizes Large Language Models (LLMs) to simulate complex interactions between human and extraterrestrial civilizations. This paper introduces a mathematical model for quantifying the levels of civilization development and further employs a state transition matrix approach to evaluate their trajectories. Through this methodology, our study quantitatively analyzes the growth trajectories of civilizations, providing insights into future decision-making at critical points of growth and saturation. Furthermore, this paper acknowledges the vast diversity of potential living conditions across the universe, which could foster unique cosmologies, ethical codes, and worldviews among different civilizations. Recognizing the Earth-centric bias inherent in current LLM designs, we propose the novel concept of using LLM agents with diverse ethical paradigms and simulating interactions between entities with distinct moral principles. This innovative research not only introduces a novel method for comprehending potential inter-civilizational dynamics but also holds practical value in enabling entities with divergent value systems to strategize, prevent conflicts, and engage in games under conditions of asymmetric information. The accompanying code is available at https://github.com/MingyuJ666/Simulating-Alien-Civilizations-with-LLM-based-Agents.
Related papers
- Integrating LLM in Agent-Based Social Simulation: Opportunities and Challenges [0.7739037410679168]
The paper reviews recent findings on the ability of Large Language Models to replicate key aspects of human cognition.<n>The second part surveys emerging applications of LLMs in multi-agent simulation frameworks.<n>The paper concludes by advocating for hybrid approaches that integrate LLMs into traditional agent-based modeling platforms.
arXiv Detail & Related papers (2025-07-25T15:15:35Z) - Modeling Earth-Scale Human-Like Societies with One Billion Agents [54.465233996410156]
Light Society is an agent-based simulation framework.<n>It formalizes social processes as structured transitions of agent and environment states.<n>It supports efficient simulation of societies with over one billion agents.
arXiv Detail & Related papers (2025-06-07T09:14:12Z) - Scientific Hypothesis Generation and Validation: Methods, Datasets, and Future Directions [19.926445428206776]
Large Language Models (LLMs) are transforming scientific hypothesis generation and validation.<n>This survey provides a structured overview of LLM-driven approaches.<n>We examine techniques such as retrieval-augmented generation, knowledge-graph completion, simulation, causal inference, and tool-assisted reasoning.
arXiv Detail & Related papers (2025-05-06T19:22:23Z) - SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
We introduce SocioVerse, an agent-driven world model for social simulation.
Our framework features four powerful alignment components and a user pool of 10 million real individuals.
Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness.
arXiv Detail & Related papers (2025-04-14T12:12:52Z) - Measurement of LLM's Philosophies of Human Nature [113.47929131143766]
We design the standardized psychological scale specifically targeting large language models (LLM)
We show that current LLMs exhibit a systemic lack of trust in humans.
We propose a mental loop learning framework, which enables LLM to continuously optimize its value system.
arXiv Detail & Related papers (2025-04-03T06:22:19Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - From Text to Life: On the Reciprocal Relationship between Artificial Life and Large Language Models [18.888208951616008]
Large Language Models (LLMs) have taken the field of AI by storm, but their adoption in the field of Artificial Life (ALife) has been, so far, relatively reserved.
We explore the potential of LLMs as tools for ALife research, for example, as operators for evolutionary or the generation of open-ended environments.
arXiv Detail & Related papers (2024-06-14T07:45:32Z) - Is Sora a World Simulator? A Comprehensive Survey on General World Models and Beyond [101.15395503285804]
General world models represent a crucial pathway toward achieving Artificial General Intelligence (AGI)
In this survey, we embark on a comprehensive exploration of the latest advancements in world models.
We examine challenges and limitations of world models, and discuss their potential future directions.
arXiv Detail & Related papers (2024-05-06T14:37:07Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
This work proposes a novel framework, ValueLex, to reconstruct Large Language Models' unique value system from scratch.
Based on Lexical Hypothesis, ValueLex introduces a generative approach to elicit diverse values from 30+ LLMs.
We identify three core value dimensions, Competence, Character, and Integrity, each with specific subdimensions, revealing that LLMs possess a structured, albeit non-human, value system.
arXiv Detail & Related papers (2024-04-19T09:44:51Z) - Large Language Models Need Consultants for Reasoning: Becoming an Expert in a Complex Human System Through Behavior Simulation [5.730580726163518]
Large language models (LLMs) have demonstrated remarkable capabilities comparable to humans in fields such as mathematics, law, coding, common sense, and world knowledge.
We propose a novel reasoning framework, termed Mosaic Expert Observation Wall'' (MEOW) exploiting generative-agents-based simulation technique.
arXiv Detail & Related papers (2024-03-27T03:33:32Z) - A Moral Imperative: The Need for Continual Superalignment of Large Language Models [1.0499611180329806]
Superalignment is a theoretical framework that aspires to ensure that superintelligent AI systems act in accordance with human values and goals.
This paper examines the challenges associated with achieving life-long superalignment in AI systems, particularly large language models (LLMs)
arXiv Detail & Related papers (2024-03-13T05:44:50Z) - CERN for AGI: A Theoretical Framework for Autonomous Simulation-Based
Artificial Intelligence Testing and Alignment [1.9212368803706583]
This study investigates an innovative simulation-based multi-agent system within a virtual reality framework that replicates the real-world environment.
The framework is populated by automated 'digital citizens,' simulating complex social structures and interactions to examine and optimize AGI.
arXiv Detail & Related papers (2023-12-14T23:48:51Z) - MacGyver: Are Large Language Models Creative Problem Solvers? [87.70522322728581]
We explore the creative problem-solving capabilities of modern LLMs in a novel constrained setting.
We create MACGYVER, an automatically generated dataset consisting of over 1,600 real-world problems.
We present our collection to both LLMs and humans to compare and contrast their problem-solving abilities.
arXiv Detail & Related papers (2023-11-16T08:52:27Z) - Simulating Opinion Dynamics with Networks of LLM-based Agents [7.697132934635411]
We propose a new approach to simulating opinion dynamics based on populations of Large Language Models (LLMs)
Our findings reveal a strong inherent bias in LLM agents towards producing accurate information, leading simulated agents to consensus in line with scientific reality.
After inducing confirmation bias through prompt engineering, however, we observed opinion fragmentation in line with existing agent-based modeling and opinion dynamics research.
arXiv Detail & Related papers (2023-11-16T07:01:48Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
This paper explores the integration of two AI subdisciplines employed in the development of artificial agents that exhibit intelligent behavior: Large Language Models (LLMs) and Cognitive Architectures (CAs)
We present three integration approaches, each grounded in theoretical models and supported by preliminary empirical evidence.
These approaches aim to harness the strengths of both LLMs and CAs, while mitigating their weaknesses, thereby advancing the development of more robust AI systems.
arXiv Detail & Related papers (2023-08-18T21:42:47Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
We propose four characteristics of generally intelligent agents.
We argue that active engagement with objects in the real world delivers more robust signals for forming conceptual representations.
We conclude by outlining promising future research directions in the field of artificial general intelligence.
arXiv Detail & Related papers (2023-07-07T13:58:16Z) - Voluminous yet Vacuous? Semantic Capital in an Age of Large Language
Models [0.0]
Large Language Models (LLMs) have emerged as transformative forces in the realm of natural language processing, wielding the power to generate human-like text.
This paper explores the evolution, capabilities, and limitations of these models, while highlighting ethical concerns they raise.
arXiv Detail & Related papers (2023-05-29T09:26:28Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.