Mechanical detection of nuclear decays
- URL: http://arxiv.org/abs/2402.13257v2
- Date: Tue, 9 Jul 2024 03:06:56 GMT
- Title: Mechanical detection of nuclear decays
- Authors: Jiaxiang Wang, T. W. Penny, Juan Recoaro, Benjamin Siegel, Yu-Han Tseng, David C. Moore,
- Abstract summary: We report the detection of individual nuclear decays through the mechanical recoil of the entire micron-sized particle.
Momentum conservation ensures that such measurements are sensitive to any particles emitted in the decay.
The techniques developed here may find use in fields ranging from nuclear forensics to dark matter and neutrino physics.
- Score: 1.2688606740893802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We report the detection of individual nuclear $\alpha$ decays through the mechanical recoil of the entire micron-sized particle in which the decaying nuclei are embedded. Momentum conservation ensures that such measurements are sensitive to any particles emitted in the decay, including neutral particles that may otherwise evade detection with existing techniques. Detection of the minuscule recoil of an object more than $10^{12}$ times more massive than the emitted particles is made possible by recently developed techniques in levitated optomechanics, which enable high-precision optical control and measurement of the mechanical motion of optically trapped particles. Observation of a change in the net charge of the particle coincident with the recoil allows decays to be identified with background levels at the micro-Becquerel level. The techniques developed here may find use in fields ranging from nuclear forensics to dark matter and neutrino physics.
Related papers
- A Rotating-Wave Comagnetometer Detector for Particle Physics [1.1510009152620668]
We develop a technique to suppress magnetic noise at tunable frequencies while maintaining high sensitivity to target signals.
This work paves the way for a new class of tabletop experiments aimed at searching for new physics.
arXiv Detail & Related papers (2024-10-21T18:00:01Z) - Thermal activated detection of dark particles in a weakly coupled quantum Ising ladder [6.125862884670682]
The Ising$_h2$ integrable field theory possesses eight types of relativistic particles.
It is predicted that all odd-parity particles are dark and cannot be directly excited from the ground state.
We find that the lightest dark particle is detectable, manifested as a thermal activation gap in nuclear magnetic resonance measurements.
arXiv Detail & Related papers (2024-06-21T09:58:23Z) - Production of twisted particles in magnetic fields [62.997667081978825]
Quantum states suitable for a production of charged particles in a uniform magnetic field are determined.
Experiments allowing one successful discoveries of twisted positrons and positroniums are developed.
arXiv Detail & Related papers (2022-07-28T14:20:36Z) - Searches for massive neutrinos with mechanical quantum sensors [0.0]
We present the concept that a single nanometer-scale, optically levitated sensor operated with sensitivity near the standard quantum limit can search for heavy sterile neutrinos.
We also comment on the possibility that mechanical sensors operated well into the quantum regime might ultimately reach the sensitivities required to provide an absolute measurement of the mass of the light neutrino states.
arXiv Detail & Related papers (2022-07-12T23:12:49Z) - Requirements on Quantum Superpositions of Macro-Objects for Sensing
Neutrinos [0.0]
We examine a macroscopic system in a quantum superposition of two spatially separated localized states as a detector for a stream of weakly interacting relativistic particles.
We do this using the explicit example of neutrinos with MeV-scale energy scattering from a solid object via neutral-current neutrino-nucleus scattering.
We find that a potentially measurable relative phase between quantum superposed components is obtained for a single gram scale mass placed in a superposition of spatial components separated by $10-14$m under sufficient cooling and background suppression.
arXiv Detail & Related papers (2022-04-27T17:45:48Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Quantum control of a nanoparticle optically levitated in cryogenic free
space [0.0]
Tests of quantum mechanics on a macroscopic scale require extreme control over mechanical motion and its decoherence.
In this work, we optically levitate a femto-gram dielectric particle in cryogenic free space.
We cool its center-of-mass motion by measurement-based feedback to an average occupancy of 0.65 motional quanta, corresponding to a state purity of 43%.
arXiv Detail & Related papers (2021-03-05T18:12:50Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.