論文の概要: Leveraging Translation For Optimal Recall: Tailoring LLM Personalization
With User Profiles
- arxiv url: http://arxiv.org/abs/2402.13500v1
- Date: Wed, 21 Feb 2024 03:25:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 17:06:30.647586
- Title: Leveraging Translation For Optimal Recall: Tailoring LLM Personalization
With User Profiles
- Title(参考訳): 最適リコールのための翻訳活用:ユーザプロファイルによるllmパーソナライゼーションの調整
- Authors: Karthik Ravichandran, Sarmistha Sarna Gomasta
- Abstract要約: 本稿では,言語間情報検索システムにおけるリコール改善のための新しい手法について検討する。
提案手法は,マルチレベル翻訳,セマンティック埋め込みに基づく拡張,ユーザプロファイル中心の拡張を組み合わせた手法である。
ニュースとTwitterデータセットの実験では、ベースラインBM25ランキングよりも優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores a novel technique for improving recall in cross-language
information retrieval (CLIR) systems using iterative query refinement grounded
in the user's lexical-semantic space. The proposed methodology combines
multi-level translation, semantic embedding-based expansion, and user
profile-centered augmentation to address the challenge of matching variance
between user queries and relevant documents. Through an initial BM25 retrieval,
translation into intermediate languages, embedding lookup of similar terms, and
iterative re-ranking, the technique aims to expand the scope of potentially
relevant results personalized to the individual user. Comparative experiments
on news and Twitter datasets demonstrate superior performance over baseline
BM25 ranking for the proposed approach across ROUGE metrics. The translation
methodology also showed maintained semantic accuracy through the multi-step
process. This personalized CLIR framework paves the path for improved
context-aware retrieval attentive to the nuances of user language.
- Abstract(参考訳): 本稿では,ユーザの語彙-意味空間に根ざした反復的クエリリファインメントを用いた言語間情報検索(CLIR)システムにおけるリコール改善手法を提案する。
提案手法は,マルチレベル翻訳,セマンティック埋め込みに基づく拡張,およびユーザプロファイル中心の拡張を組み合わせることで,ユーザクエリと関連するドキュメント間の差異の一致に対処する。
最初のbm25検索、中間言語への翻訳、類似用語の検索、反復的な再ランキングを通じて、この技術は、個々のユーザーにパーソナライズされる可能性のある結果の範囲を拡大することを目的としている。
ニュースとTwitterデータセットの比較実験では、ROUGEメトリクスをまたいだ提案手法のベースラインBM25ランキングよりも優れたパフォーマンスを示している。
翻訳手法は多段階プロセスを通して意味的精度を維持できることを示した。
このパーソナライズされたCLIRフレームワークは、ユーザ言語のニュアンスに配慮したコンテキスト認識検索の改善パスを舗装する。
関連論文リスト
- Scholar Name Disambiguation with Search-enhanced LLM Across Language [0.2302001830524133]
本稿では,複数の言語にまたがる検索強化言語モデルを用いて,名前の曖昧さを改善する手法を提案する。
検索エンジンの強力なクエリ書き換え、意図認識、およびデータインデックス機能を利用することで、エンティティの識別やプロファイルの抽出を行うため、よりリッチな情報を集めることができる。
論文 参考訳(メタデータ) (2024-11-26T04:39:46Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
テキストレス音声言語モデル(SLM)のセマンティック理解を強化するためのAlign-SLMフレームワークを導入する。
提案手法は、与えられたプロンプトから複数の音声継続を生成し、意味的指標を用いて、直接選好最適化(DPO)のための選好データを生成する。
語彙および構文モデリングのためのZeroSpeech 2021ベンチマーク、意味的コヒーレンスのためのStoryClozeデータセットの音声バージョン、GPT4-oスコアや人間評価などの音声生成指標を用いて、フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-11-04T06:07:53Z) - Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation [60.493180081319785]
本稿では,各復号工程における多様性とリスクのトレードオフを考慮し,トラクションサンプリング手法の本質的な能力を推定する体系的手法を提案する。
本研究は,既存のトラクションサンプリング手法の総合的な比較と,ユーザのガイドラインとして推奨されるパラメータについて紹介する。
論文 参考訳(メタデータ) (2024-08-24T14:14:32Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
大きな言語モデル(LLM)のメモリを拡張する一般的な方法は、検索拡張生成(RAG)である。
本稿では,検索結果の集合に対するクエリに関連する総情報の確率的尺度である,関連情報ゲインに基づく新しい単純な最適化指標を提案する。
RAGシステムの検索コンポーネントのドロップイン置換として使用すると、質問応答タスクにおける最先端のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2024-07-16T18:09:21Z) - Improving Retrieval-augmented Text-to-SQL with AST-based Ranking and Schema Pruning [10.731045939849125]
本稿では,テキストからセマンティックへの解析に注目する。
商用データベースのスキーマのサイズとビジネスインテリジェンスソリューションのデプロイ可能性に関する課題から,入力データベース情報を動的に取得する $textASTReS$ を提案する。
論文 参考訳(メタデータ) (2024-07-03T15:55:14Z) - MINERS: Multilingual Language Models as Semantic Retrievers [23.686762008696547]
本稿では,意味検索タスクにおける多言語言語モデルの有効性を評価するためのベンチマークであるMINERSを紹介する。
我々は,200以上の多言語にわたるサンプルの検索において,LMの堅牢性を評価する包括的なフレームワークを構築した。
以上の結果から,意味論的に類似した埋め込みを検索することで,最先端のアプローチと競合する性能が得られることが示された。
論文 参考訳(メタデータ) (2024-06-11T16:26:18Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - Sõnajaht: Definition Embeddings and Semantic Search for Reverse Dictionary Creation [0.21485350418225246]
本稿では,最新の事前学習言語モデルと近接する近傍探索アルゴリズムを用いて,情報検索に基づく逆辞書システムを提案する。
提案手法はエストニアの既存の語彙資源であるソナベブ(単語ウェブ)に適用され,セマンティック検索を利用した言語間逆辞書機能を導入して拡張・強化することを目的としている。
論文 参考訳(メタデータ) (2024-04-30T10:21:14Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - On Cross-Lingual Retrieval with Multilingual Text Encoders [51.60862829942932]
言語間文書・文検索タスクにおける最先端多言語エンコーダの適合性について検討する。
教師なしのアドホック文と文書レベルのCLIR実験でそれらの性能をベンチマークする。
我々は、ゼロショット言語とドメイン転送CLIR実験のシリーズにおける英語関連データに基づいて、教師付き方式で微調整された多言語エンコーダの評価を行った。
論文 参考訳(メタデータ) (2021-12-21T08:10:27Z) - Unsupervised Cross-lingual Adaptation for Sequence Tagging and Beyond [58.80417796087894]
多言語事前訓練言語モデル(mPTLM)による言語間適応は、主にゼロショットアプローチと翻訳に基づくアプローチの2行からなる。
本稿では、ゼロショットアプローチと翻訳に基づくアプローチを統合し、適応性能を向上させるための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-23T13:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。