論文の概要: ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents
- arxiv url: http://arxiv.org/abs/2402.13547v2
- Date: Thu, 17 Oct 2024 02:21:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:16:38.942509
- Title: ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents
- Title(参考訳): ActiveRAG:Retrieval-Augmented Agentによる自律的知識同化と調節
- Authors: Zhipeng Xu, Zhenghao Liu, Yukun Yan, Shuo Wang, Shi Yu, Zheni Zeng, Chaojun Xiao, Zhiyuan Liu, Ge Yu, Chenyan Xiong,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)が外部知識を活用することを可能にする。
既存のRAGモデルは、LLMを受動的情報受信者として扱うことが多い。
人間の学習行動を模倣するマルチエージェントフレームワークであるActiveRAGを紹介する。
- 参考スコア(独自算出の注目度): 49.30553350788524
- License:
- Abstract: Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge, enhancing their performance on knowledge-intensive tasks. However, existing RAG models often treat LLMs as passive recipients of information, which can lead to interference from noisy retrieved content. In this paper, we introduce ActiveRAG, a multi-agent framework that mimics human learning behavior to help LLMs actively engage with and learn from retrieved evidence. ActiveRAG designs a knowledge assimilation agent to form the knowledge understanding by associating external knowledge with the parametric memory of LLMs. Then our model employs the thought accommodation agent to calibrate the internal thought of LLMs for response refinement. Our experiments show that ActiveRAG achieves a 10\% improvement over vanilla RAG on various question-answering benchmarks. Further analysis reveals that ActiveRAG mitigates the impact of noisy retrievals, alleviates conflicts between external knowledge and parametric memory and improves the self-consistency of LLMs in answering the question. All data and codes are available at https://github.com/OpenMatch/ActiveRAG.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) により、Large Language Models (LLM) は外部知識を活用することができ、知識集約タスクのパフォーマンスを高めることができる。
しかしながら、既存のRAGモデルはLLMを受動的情報受信者として扱うことが多く、ノイズの多い検索コンテンツからの干渉につながる可能性がある。
本稿では,人間の学習行動を模倣したマルチエージェントフレームワークであるActiveRAGを紹介する。
ActiveRAGは、LLMのパラメトリックメモリと外部知識を関連付けて知識理解を形成するための知識同化エージェントを設計する。
そこで本モデルは, LLMの内部的思考を調整し, 応答改善を図るために, 思考調節剤を用いる。
実験の結果,様々な質問応答ベンチマークにおいて,ActiveRAGはバニラRAGよりも10倍改善していることがわかった。
さらなる分析により、ActiveRAGはノイズ検索の影響を緩和し、外部知識とパラメトリックメモリの衝突を緩和し、質問に答える際のLCMの自己整合性を改善することが明らかとなった。
すべてのデータとコードはhttps://github.com/OpenMatch/ActiveRAGで入手できる。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - AssistRAG: Boosting the Potential of Large Language Models with an Intelligent Information Assistant [23.366991558162695]
大規模言語モデルは「幻覚」として知られる事実的に誤った情報を生成する
これらの課題に対処するため、我々はAssistRAG(AssistRAG)を用いた検索生成支援システムを提案する。
このアシスタントは、ツールの使用、アクションの実行、メモリ構築、プラン仕様を通じて、メモリと知識を管理する。
論文 参考訳(メタデータ) (2024-11-11T09:03:52Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models [23.68266151581951]
Retrieval-Augmented Generation (RAG) は,Large Language Models (LLMs) の実際の精度を高めることが示されている。
既存の手法は、抽出された証拠を効果的に活用する際の限定的な推論能力に悩まされることが多い。
我々は,オープンソースLLMを用いたRAGにおける推論能力の向上を目的とした,新しいフレームワークであるOpen-RAGを紹介する。
論文 参考訳(メタデータ) (2024-10-02T17:37:18Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
大規模言語モデル(LLM)は、ロボットの課題を解決するための有望なツールとして登場した。
既存のLSMベースのエージェントは、過去の相互作用を維持および学習する能力に欠ける。
RAG-Modulo は,過去のインタラクションを記憶した LLM ベースのエージェントを強化し,エージェントの判断を評価するための批判を取り入れたフレームワークである。
論文 参考訳(メタデータ) (2024-09-18T20:03:32Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。