Reinforcement learning-assisted quantum architecture search for
variational quantum algorithms
- URL: http://arxiv.org/abs/2402.13754v3
- Date: Thu, 7 Mar 2024 11:51:52 GMT
- Title: Reinforcement learning-assisted quantum architecture search for
variational quantum algorithms
- Authors: Akash Kundu
- Abstract summary: This thesis focuses on identifying functional quantum circuits in noisy quantum hardware.
We introduce a tensor-based quantum circuit encoding, restrictions on environment dynamics to explore the search space of possible circuits efficiently.
In dealing with various VQAs, our RL-based QAS outperforms existing QAS.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant hurdle in the noisy intermediate-scale quantum (NISQ) era is
identifying functional quantum circuits. These circuits must also adhere to the
constraints imposed by current quantum hardware limitations. Variational
quantum algorithms (VQAs), a class of quantum-classical optimization
algorithms, were developed to address these challenges in the currently
available quantum devices. However, the overall performance of VQAs depends on
the initialization strategy of the variational circuit, the structure of the
circuit (also known as ansatz), and the configuration of the cost function.
Focusing on the structure of the circuit, in this thesis, we improve the
performance of VQAs by automating the search for an optimal structure for the
variational circuits using reinforcement learning (RL). Within the thesis, the
optimality of a circuit is determined by evaluating its depth, the overall
count of gates and parameters, and its accuracy in solving the given problem.
The task of automating the search for optimal quantum circuits is known as
quantum architecture search (QAS). The majority of research in QAS is primarily
focused on a noiseless scenario. Yet, the impact of noise on the QAS remains
inadequately explored. In this thesis, we tackle the issue by introducing a
tensor-based quantum circuit encoding, restrictions on environment dynamics to
explore the search space of possible circuits efficiently, an episode halting
scheme to steer the agent to find shorter circuits, a double deep Q-network
(DDQN) with an $\epsilon$-greedy policy for better stability. The numerical
experiments on noiseless and noisy quantum hardware show that in dealing with
various VQAs, our RL-based QAS outperforms existing QAS. Meanwhile, the methods
we propose in the thesis can be readily adapted to address a wide range of
other VQAs.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - A joint optimization approach of parameterized quantum circuits with a
tensor network [0.0]
Current intermediate-scale quantum (NISQ) devices remain limited in their capabilities.
We propose the use of parameterized Networks (TNs) to attempt an improved performance of the Variational Quantum Eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2024-02-19T12:53:52Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)
QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
Variational quantum algorithms (VQAs) have shown strong evidences to gain provable computational advantages for diverse fields such as finance, machine learning, and chemistry.
However, the ansatz exploited in modern VQAs is incapable of balancing the tradeoff between expressivity and trainability.
We demonstrate the first proof-of-principle experiment of applying an efficient automatic ansatz design technique to enhance VQAs on an 8-qubit superconducting quantum processor.
arXiv Detail & Related papers (2022-01-04T01:53:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Differentiable Quantum Architecture Search [15.045985536395479]
We propose a general framework of differentiable quantum architecture search (DQAS)
DQAS enables automated designs of quantum circuits in an end-to-end differentiable fashion.
arXiv Detail & Related papers (2020-10-16T18:00:03Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.