FLD: Fourier Latent Dynamics for Structured Motion Representation and
Learning
- URL: http://arxiv.org/abs/2402.13820v1
- Date: Wed, 21 Feb 2024 13:59:21 GMT
- Title: FLD: Fourier Latent Dynamics for Structured Motion Representation and
Learning
- Authors: Chenhao Li, Elijah Stanger-Jones, Steve Heim, Sangbae Kim
- Abstract summary: We introduce a self-supervised, structured representation and generation method that extracts spatial-temporal relationships in periodic or quasi-periodic motions.
Our work opens new possibilities for future advancements in general motion representation and learning algorithms.
- Score: 19.491968038335944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion trajectories offer reliable references for physics-based motion
learning but suffer from sparsity, particularly in regions that lack sufficient
data coverage. To address this challenge, we introduce a self-supervised,
structured representation and generation method that extracts spatial-temporal
relationships in periodic or quasi-periodic motions. The motion dynamics in a
continuously parameterized latent space enable our method to enhance the
interpolation and generalization capabilities of motion learning algorithms.
The motion learning controller, informed by the motion parameterization,
operates online tracking of a wide range of motions, including targets unseen
during training. With a fallback mechanism, the controller dynamically adapts
its tracking strategy and automatically resorts to safe action execution when a
potentially risky target is proposed. By leveraging the identified
spatial-temporal structure, our work opens new possibilities for future
advancements in general motion representation and learning algorithms.
Related papers
- Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
Spectral Motion Alignment (SMA) is a framework that refines and aligns motion vectors using Fourier and wavelet transforms.
SMA learns motion patterns by incorporating frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics.
Extensive experiments demonstrate SMA's efficacy in improving motion transfer while maintaining computational efficiency and compatibility across various video customization frameworks.
arXiv Detail & Related papers (2024-03-22T14:47:18Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
We propose a GNN-based approach that uses temporal encoding and imitation learning with data aggregation for learning both the embeddings and the edge prioritization policies.
Experiments show that the proposed methods can significantly accelerate online planning over state-of-the-art complete dynamic planning algorithms.
arXiv Detail & Related papers (2022-10-16T01:27:16Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control [145.61135774698002]
We propose a fully automated approach to selecting motion for a character to track in a given scenario.
High-level task objectives that the character should perform can be specified by relatively simple reward functions.
Low-level style of the character's behaviors can be specified by a dataset of unstructured motion clips.
Our system produces high-quality motions comparable to those achieved by state-of-the-art tracking-based techniques.
arXiv Detail & Related papers (2021-04-05T22:43:14Z) - Learning Self-Similarity in Space and Time as Generalized Motion for
Action Recognition [42.175450800733785]
We propose a rich motion representation based on video self-similarity (STSS)
We leverage the whole volume of STSSS and let our model learn to extract an effective motion representation from it.
The proposed neural block, dubbed SELFY, can be easily inserted into neural architectures and trained end-to-end without additional supervision.
arXiv Detail & Related papers (2021-02-14T07:32:55Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.