論文の概要: What we can learn from TikTok through its Research API
- arxiv url: http://arxiv.org/abs/2402.13855v2
- Date: Thu, 4 Apr 2024 08:08:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 19:23:57.134200
- Title: What we can learn from TikTok through its Research API
- Title(参考訳): TikTokがResearch APIで学んだこと
- Authors: Francesco Corso, Francesco Pierri, Gianmarco De Francisci Morales,
- Abstract要約: 最近リリースされた無料のResearch APIは、投稿されたビデオ、関連コメント、ユーザーアクティビティのデータを集めるための扉を開く。
本研究は,TikTokビデオのランダムなサンプルを6年間にわたって収集し,分析することにより,Research APIが返した結果の信頼性を評価することに焦点を当てた。
- 参考スコア(独自算出の注目度): 3.424635462664968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: TikTok is a social media platform that has gained immense popularity over the last few years, particularly among younger demographics, due to the viral trends and challenges shared worldwide. The recent release of a free Research API opens the door to collecting data on posted videos, associated comments, and user activities. Our study focuses on evaluating the reliability of the results returned by the Research API, by collecting and analyzing a random sample of TikTok videos posted in a span of 6 years. Our preliminary results are instrumental for future research that aims to study the platform, highlighting caveats on the geographical distribution of videos and on the global prevalence of viral and conspiratorial hashtags.
- Abstract(参考訳): TikTokはソーシャルメディアプラットフォームで、近年、特に若年層で人気が高まっている。
最近リリースされた無料のResearch APIは、投稿されたビデオ、関連コメント、ユーザーアクティビティのデータを集めるための扉を開く。
本研究は,TikTokビデオのランダムなサンプルを6年間にわたって収集し,分析することにより,Research APIが返した結果の信頼性を評価することに焦点を当てた。
本研究は, ビデオの地理的分布と, バイラル・コンスピラリアル・ハッシュタグのグローバルな普及に注意を払って, プラットフォームの研究をめざして, 今後の研究に役立てるものである。
関連論文リスト
- Studying Behavioral Addiction by Combining Surveys and Digital Traces: A Case Study of TikTok [8.709322238283734]
ソーシャルメディアプラットフォームから得られたデジタルデータを用いて,行動依存症を効果的に診断できるかどうかを検討した。
我々は1590人のTikTokユーザーを調査し、3つの中毒グループに分類した。
ユーザーのデータを分析することで、中毒の可能性が高いユーザーがTikTokの動画を見て、一日中TikTokに戻ってくる時間が増えていることがわかりました。
論文 参考訳(メタデータ) (2025-01-26T14:24:07Z) - Multi-Platform Aggregated Dataset of Online Communities (MADOC) [64.45797970830233]
MADOCはBluesky、Koo、Reddit、Voat(2012-2024)のデータを集め、標準化している。
このデータセットは、標準化されたインタラクション記録と感情分析を通じて、プラットフォーム間の有害な振る舞いの進化の比較研究を可能にする。
論文 参考訳(メタデータ) (2025-01-22T14:02:11Z) - Labeled Datasets for Research on Information Operations [71.34999856621306]
ソーシャルメディアプラットフォームによって検証されたIOポストと、同様のトピックを同じ時間フレーム(制御データ)で議論した303kアカウントによる1300万以上の投稿の両方を含む、26のキャンペーンに関するラベル付きデータセットを新たに提示する。
データセットは、さまざまなキャンペーンや国で調整されたアカウントによって使用される物語、ネットワークインタラクション、エンゲージメント戦略の研究を促進する。
論文 参考訳(メタデータ) (2024-11-15T22:15:01Z) - HOTVCOM: Generating Buzzworthy Comments for Videos [49.39846630199698]
この研究は、中国最大のビデオコンテンツデータセットであるtextscHotVComを紹介し、94万の多様なビデオと1億1700万のコメントからなる。
また、中国語のビデオデータセット上で、視覚的、聴覚的、テキスト的データを相乗的に統合し、影響力のあるホットコンテンツを生成するtexttComHeatフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-23T16:45:13Z) - Conspiracy theories and where to find them on TikTok [3.424635462664968]
TikTokがオンラインの有害で危険なコンテンツを宣伝し、増幅する可能性を懸念する声が上がっている。
本研究は、陰謀論を推し進める動画の存在を分析し、その有病率を低く見積もっている。
ビデオの音声の書き起こしを抽出した後の陰謀論を識別するために,最先端のオープン言語モデルの有効性を評価する。
論文 参考訳(メタデータ) (2024-07-17T13:28:11Z) - Vertical Federated Learning for Effectiveness, Security, Applicability: A Survey [67.48187503803847]
Vertical Federated Learning(VFL)は、プライバシ保護のための分散学習パラダイムである。
近年の研究では、VFLの様々な課題に対処する有望な成果が示されている。
この調査は、最近の展開を体系的に概観する。
論文 参考訳(メタデータ) (2024-05-25T16:05:06Z) - SMP Challenge: An Overview and Analysis of Social Media Prediction Challenge [63.311045291016555]
ソーシャルメディアの人気予測(SMPP)は、オンライン投稿の今後の人気値を自動予測する重要なタスクである。
本稿では,課題,データ,研究の進展について要約する。
論文 参考訳(メタデータ) (2024-05-17T02:36:14Z) - An Empirical Investigation of Personalization Factors on TikTok [77.34726150561087]
TikTokのアルゴリズムがプラットフォームの成功とコンテンツの配布に重要であるにもかかわらず、アルゴリズムの実証的な分析はほとんど行われていない。
我々は,私たちが開発したカスタムアルゴリズムを用いたソック・パペット・監査手法を用いて,TikTokへのアクセスに使用される言語と位置情報の効果を検証,分析した。
その結果,フォローフェールが最も強い影響を受けており,ライクフェールやビデオ視聴率が高いことが判明した。
論文 参考訳(メタデータ) (2022-01-28T17:40:00Z) - Post or Tweet: Lessons from a Study of Facebook and Twitter Usage [9.888864336862385]
このワークショップでは、FacebookとTwitterという、おそらく最も人気のある2つのソーシャルネットワークサイトについて、現在進行中の混合調査についてレポートする。
この研究の目的は、参加者のモチベーションに関する調査データとAPI抽出を通じて収集された利用データを組み合わせることで、ソーシャルメディアの選択とクロスプラットフォーム利用のニュアンスに光を当てることである。
論文 参考訳(メタデータ) (2020-11-27T15:55:02Z) - Using social media to measure demographic responses to natural disaster:
Insights from a large-scale Facebook survey following the 2019 Australia
Bushfires [3.441021278275805]
われわれは、Facebookアプリ自体を通じて、ディスアスター後の人口統計と経済効果を迅速に調査する。
これらの調査回答は、Facebook Displacement Mapsを含むアプリ由来のモビリティデータを強化するために使用します。
我々は、変位決定やタイミングなど、重要な領域のいくつかの違いを明らかにした。
論文 参考訳(メタデータ) (2020-08-09T05:55:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。