論文の概要: What Linguistic Features and Languages are Important in LLM Translation?
- arxiv url: http://arxiv.org/abs/2402.13917v1
- Date: Wed, 21 Feb 2024 16:32:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-22 14:28:16.045500
- Title: What Linguistic Features and Languages are Important in LLM Translation?
- Title(参考訳): llm翻訳において言語的特徴と言語は重要なのか?
- Authors: Ryandito Diandaru, Lucky Susanto, Zilu Tang, Ayu Purwarianti, Derry
Wijaya
- Abstract要約: 7BのLlama2モデルは、これまでに見たすべての言語に対して10 BLEUスコアを超える。
構文的類似性は、翻訳品質を決定する上で、必ずしも主要な言語要因ではない。
一部の言語は、英語よりも訓練データが少ないにもかかわらず、英語に匹敵する強い相関関係を示している。
- 参考スコア(独自算出の注目度): 4.888605304379589
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) demonstrate strong capability across multiple
tasks, including machine translation. Our study focuses on evaluating Llama2's
machine translation capabilities and exploring how translation depends on
languages in its training data. Our experiments show that the 7B Llama2 model
yields above 10 BLEU score for all languages it has seen, but not always for
languages it has not seen. Most gains for those unseen languages are observed
the most with the model scale compared to using chat versions or adding shot
count. Furthermore, our linguistic distance analysis reveals that syntactic
similarity is not always the primary linguistic factor in determining
translation quality. Interestingly, we discovered that under specific
circumstances, some languages, despite having significantly less training data
than English, exhibit strong correlations comparable to English. Our
discoveries here give new perspectives for the current landscape of LLMs,
raising the possibility that LLMs centered around languages other than English
may offer a more effective foundation for a multilingual model.
- Abstract(参考訳): 大規模言語モデル(LLM)は、機械翻訳を含む複数のタスクにまたがる強力な能力を示す。
本研究は,llama2の機械翻訳能力の評価と,その学習データにおける言語依存度について検討する。
我々の実験は、7B Llama2モデルがこれまでに見た全ての言語に対して10 BLEUスコア以上の結果が得られることを示した。
これらの見当たらない言語に対するほとんどの利益は、チャットバージョンの使用やショット数の追加と比べて、モデルスケールで最も多く観察される。
さらに, 言語間距離分析の結果, 構文的類似性が翻訳品質を決定する主要な言語要因であるとは限らないことがわかった。
興味深いことに、特定の状況下では、一部の言語は、英語よりもトレーニングデータが少ないにもかかわらず、英語に匹敵する強い相関関係を示した。
ここでの発見は、LLMの現在の展望に新たな視点を与え、英語以外の言語を中心としたLLMが、多言語モデルのより効果的な基盤を提供する可能性を高める。
関連論文リスト
- Pruning Multilingual Large Language Models for Multilingual Inference [28.36717615166238]
本研究では,非英語言語におけるMLLMのゼロショット性能を向上させる方法について検討する。
まず、翻訳を行う際のMLLMの挙動を分析し、翻訳過程において重要な役割を果たす大きな特徴があることを明らかにする。
論文 参考訳(メタデータ) (2024-09-25T13:15:50Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - The Role of Language Imbalance in Cross-lingual Generalisation: Insights from Cloned Language Experiments [57.273662221547056]
本研究では,言語間一般化の非直感的な新規ドライバである言語不均衡について検討する。
学習中に支配的な言語が存在することが、あまり頻度の低い言語の性能を高めることを観察する。
分析を実言語に拡張するにつれ、頻繁な言語は依然として恩恵を受けていますが、言語不均衡が言語間の一般化を引き起こすかどうかは決定的ではありません。
論文 参考訳(メタデータ) (2024-04-11T17:58:05Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
大規模事前学習言語モデル(LLM)は多言語翻訳において強力な能力を示している。
本稿では,多言語事前学習言語モデルであるXGLM-7Bを微調整して,多言語翻訳を行う方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T12:00:24Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
多言語大言語モデル(MLLM)は、多くの異なる言語からのデータに基づいて共同で訓練される。
言語がどの程度、どの条件下で、互いのデータに依存しているかは、まだ不明である。
MLLMは、細調整の初期段階から複数の言語からのデータに依存しており、細調整の進行に伴って、この依存度が徐々に増加することが判明した。
論文 参考訳(メタデータ) (2023-05-22T17:47:41Z) - Language Chameleon: Transformation analysis between languages using
Cross-lingual Post-training based on Pre-trained language models [4.731313022026271]
本研究では,1つの低リソース言語に着目し,言語横断後学習(XPT)を用いた広範囲な評価と探索実験を行う。
結果から,XPTは桁違いのデータ量で訓練された単言語モデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2022-09-14T05:20:52Z) - Language Contamination Explains the Cross-lingual Capabilities of
English Pretrained Models [79.38278330678965]
一般的な英語事前学習コーパスには、かなりの量の非英語テキストが含まれていることが判明した。
これにより、大規模なデータセットで数十億の外国語トークンが生成される。
そして、これらの少数の非英語データでさえ、それらに基づいて訓練されたモデルの言語間移動を促進することを実証する。
論文 参考訳(メタデータ) (2022-04-17T23:56:54Z) - Does Transliteration Help Multilingual Language Modeling? [0.0]
多言語言語モデルに対する音訳の効果を実証的に測定する。
私たちは、世界で最もスクリプトの多様性が高いIndic言語にフォーカスしています。
比較的高いソースコード言語に悪影響を及ぼすことなく、低リソース言語にトランスリテラゼーションが有効であることに気付きました。
論文 参考訳(メタデータ) (2022-01-29T05:48:42Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。