Verifying message-passing neural networks via topology-based bounds tightening
- URL: http://arxiv.org/abs/2402.13937v2
- Date: Tue, 21 May 2024 17:10:59 GMT
- Title: Verifying message-passing neural networks via topology-based bounds tightening
- Authors: Christopher Hojny, Shiqiang Zhang, Juan S. Campos, Ruth Misener,
- Abstract summary: We develop a computationally effective approach towards providing robust certificates for message-passing neural networks (MPNNs)
Because our work builds on mixed-integer optimization, it encodes a wide variety of subproblems.
We test on both node and graph classification problems and consider topological attacks that both add and remove edges.
- Score: 3.3267518043390205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since graph neural networks (GNNs) are often vulnerable to attack, we need to know when we can trust them. We develop a computationally effective approach towards providing robust certificates for message-passing neural networks (MPNNs) using a Rectified Linear Unit (ReLU) activation function. Because our work builds on mixed-integer optimization, it encodes a wide variety of subproblems, for example it admits (i) both adding and removing edges, (ii) both global and local budgets, and (iii) both topological perturbations and feature modifications. Our key technology, topology-based bounds tightening, uses graph structure to tighten bounds. We also experiment with aggressive bounds tightening to dynamically change the optimization constraints by tightening variable bounds. To demonstrate the effectiveness of these strategies, we implement an extension to the open-source branch-and-cut solver SCIP. We test on both node and graph classification problems and consider topological attacks that both add and remove edges.
Related papers
- Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization [8.323690755070123]
This paper explores methods for verifying the properties of Binary Neural Networks (BNNs)
BNNs, like their full-precision counterparts, are also sensitive to input perturbations.
We introduce an alternative approach using Semidefinite Programming relaxations derived from sparse Polynomial Optimization.
arXiv Detail & Related papers (2024-05-27T11:03:48Z) - Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience [50.460555688927826]
We propose the Graph Agent Network (GAgN) to address the vulnerabilities of graph neural networks (GNNs)
GAgN is a graph-structured agent network in which each node is designed as an 1-hop-view agent.
Agents' limited view prevents malicious messages from propagating globally in GAgN, thereby resisting global-optimization-based secondary attacks.
arXiv Detail & Related papers (2023-06-12T07:27:31Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
We propose an edge-graph-neural-network (Edge-GNN) to learn the cooperative beamforming on the graph edges.
The proposed Edge-GNN achieves higher sum rate with much shorter computation time than state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-23T02:05:06Z) - Zonotope Domains for Lagrangian Neural Network Verification [102.13346781220383]
We decompose the problem of verifying a deep neural network into the verification of many 2-layer neural networks.
Our technique yields bounds that improve upon both linear programming and Lagrangian-based verification techniques.
arXiv Detail & Related papers (2022-10-14T19:31:39Z) - ASGNN: Graph Neural Networks with Adaptive Structure [41.83813812538167]
We propose a novel interpretable message passing scheme with adaptive structure (ASMP) to defend against adversarial attacks on graph structure.
ASMP is adaptive in the sense that the message passing process in different layers is able to be carried out over dynamically adjusted graphs.
arXiv Detail & Related papers (2022-10-03T15:10:40Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Robust Graph Neural Networks via Probabilistic Lipschitz Constraints [7.359962178534361]
Graph neural networks (GNNs) have recently been demonstrated to perform well on a variety of network-based tasks.
GNNs are susceptible to shifts and perturbations on their inputs, which can include both node attributes and graph structure.
arXiv Detail & Related papers (2021-12-14T17:33:32Z) - Edge Rewiring Goes Neural: Boosting Network Resilience via Policy
Gradient [62.660451283548724]
ResiNet is a reinforcement learning framework to discover resilient network topologies against various disasters and attacks.
We show that ResiNet achieves a near-optimal resilience gain on multiple graphs while balancing the utility, with a large margin compared to existing approaches.
arXiv Detail & Related papers (2021-10-18T06:14:28Z) - Neural Network Branch-and-Bound for Neural Network Verification [26.609606492971967]
We propose a novel machine learning framework that can be used for designing an effective branching strategy.
We learn two graph neural networks (GNNs) that both directly treat the network we want to verify as a graph input.
We show that our GNN models generalize well to harder properties on larger unseen networks.
arXiv Detail & Related papers (2021-07-27T14:42:57Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
Catastrophic forgetting refers to the tendency that a neural network "forgets" the previous learned knowledge upon learning new tasks.
We propose a novel scheme dedicated to overcoming this problem and hence strengthen continual learning in graph neural networks (GNNs)
At the heart of our approach is a generic module, termed as topology-aware weight preserving(TWP)
arXiv Detail & Related papers (2020-12-10T22:30:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.