Large Language Models for Code Generation: The Practitioners Perspective
- URL: http://arxiv.org/abs/2501.16998v1
- Date: Tue, 28 Jan 2025 14:52:16 GMT
- Title: Large Language Models for Code Generation: The Practitioners Perspective
- Authors: Zeeshan Rasheed, Muhammad Waseem, Kai Kristian Kemell, Aakash Ahmad, Malik Abdul Sami, Jussi Rasku, Kari Systä, Pekka Abrahamsson,
- Abstract summary: Large Language Models (LLMs) have emerged as coding assistants, capable of generating source code from natural language prompts.
We propose and develop a multi-model unified platform to generate and execute code based on natural language prompts.
We conducted a survey with 60 software practitioners from 11 countries across four continents to evaluate the usability, performance, strengths, and limitations of each model.
- Score: 4.946128083535776
- License:
- Abstract: Large Language Models (LLMs) have emerged as coding assistants, capable of generating source code from natural language prompts. With the increasing adoption of LLMs in software development, academic research and industry based projects are developing various tools, benchmarks, and metrics to evaluate the effectiveness of LLM-generated code. However, there is a lack of solutions evaluated through empirically grounded methods that incorporate practitioners perspectives to assess functionality, syntax, and accuracy in real world applications. To address this gap, we propose and develop a multi-model unified platform to generate and execute code based on natural language prompts. We conducted a survey with 60 software practitioners from 11 countries across four continents working in diverse professional roles and domains to evaluate the usability, performance, strengths, and limitations of each model. The results present practitioners feedback and insights into the use of LLMs in software development, including their strengths and weaknesses, key aspects overlooked by benchmarks and metrics, and a broader understanding of their practical applicability. These findings can help researchers and practitioners make informed decisions for systematically selecting and using LLMs in software development projects. Future research will focus on integrating more diverse models into the proposed system, incorporating additional case studies, and conducting developer interviews for deeper empirical insights into LLM-driven software development.
Related papers
- Responsible Multilingual Large Language Models: A Survey of Development, Applications, and Societal Impact [5.803667039914564]
This work bridges the gap by providing an end-to-end framework for developing and deploying MLLMs in production environments.
Our findings reveal critical challenges in supporting linguistic diversity, with 88.38% of world languages categorized as low-resource.
This survey provides essential guidance for practitioners and researchers working to develop more inclusive and effective multilingual AI systems.
arXiv Detail & Related papers (2024-10-23T03:19:15Z) - A Survey on Evaluating Large Language Models in Code Generation Tasks [30.256255254277914]
This paper provides a comprehensive review of the current methods and metrics used to evaluate the performance of Large Language Models (LLMs) in code generation tasks.
With the rapid growth in demand for automated software development, LLMs have demonstrated significant potential in the field of code generation.
arXiv Detail & Related papers (2024-08-29T12:56:06Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks.
This survey aims to bridge the gap between academia and practical development by providing a comprehensive and up-to-date literature review.
arXiv Detail & Related papers (2024-06-01T17:48:15Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
We explore the performance of large language models (LLMs) across the entire software development lifecycle with DevEval.
DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task.
Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval.
arXiv Detail & Related papers (2024-03-13T15:13:44Z) - Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming [12.355284125578342]
Large Language Models (LLMs) have become a focal point in modern software development.
LLMs offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants.
However, each system requires the LLM to be honed to its set of workspaces to ensure the best performance.
arXiv Detail & Related papers (2024-02-22T03:51:34Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - A Case Study on Test Case Construction with Large Language Models:
Unveiling Practical Insights and Challenges [2.7029792239733914]
This paper examines the application of Large Language Models in the construction of test cases within the context of software engineering.
Through a blend of qualitative and quantitative analyses, this study assesses the impact of LLMs on test case comprehensiveness, accuracy, and efficiency.
arXiv Detail & Related papers (2023-12-19T20:59:02Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
We present L2CEval, a systematic evaluation of the language-to-code generation capabilities of large language models (LLMs)
We analyze the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods.
In addition to assessing model performance, we measure confidence calibration for the models and conduct human evaluations of the output programs.
arXiv Detail & Related papers (2023-09-29T17:57:00Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.