論文の概要: High-arity PAC learning via exchangeability
- arxiv url: http://arxiv.org/abs/2402.14294v3
- Date: Mon, 16 Sep 2024 22:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 22:31:03.665792
- Title: High-arity PAC learning via exchangeability
- Title(参考訳): 交換性を利用した高純度PAC学習
- Authors: Leonardo N. Coregliano, Maryanthe Malliaris,
- Abstract要約: 我々は「構造化相関」の存在下での統計的学習である高純度PAC学習の理論を開発する。
我々の主定理は、統計学習の基本的な定理の高次性(不可知性)バージョンを確立する。
- 参考スコア(独自算出の注目度): 1.6114012813668932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a theory of high-arity PAC learning, which is statistical learning in the presence of "structured correlation". In this theory, hypotheses are either graphs, hypergraphs or, more generally, structures in finite relational languages, and i.i.d. sampling is replaced by sampling an induced substructure, producing an exchangeable distribution. Our main theorems establish a high-arity (agnostic) version of the fundamental theorem of statistical learning.
- Abstract(参考訳): 本研究では,「構造化相関」の存在下での統計的学習である高純度PAC学習の理論を開発する。
この理論では、仮説はグラフ、ハイパーグラフ、あるいはより一般に有限リレーショナル言語の構造であり、サンプリングは誘導された部分構造をサンプリングすることによって置き換えられ、交換可能な分布を生成する。
我々の主要な定理は、統計学習の基本的な定理の高次性(不可知性)バージョンを確立する。
関連論文リスト
- Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization [34.036655200677664]
本稿では、(データ)変換マップのクラスによって、列車とテストの分布を関連付けることができる分散シフト設定に焦点を当てる。
経験的リスク最小化(ERM)に対する学習ルールとアルゴリズムの削減を確立する。
我々は,学習ルールが分配シフトに関するゲーム理論的な視点を提供する点を強調した。
論文 参考訳(メタデータ) (2024-10-30T20:59:57Z) - Credal Learning Theory [4.64390130376307]
我々は,データ生成分布の変動をモデル化するために,凸集合の確率を用いて,不規則な学習理論の基礎を定めている。
境界は有限仮説空間や古典的な結果を直接一般化する無限モデル空間の場合に導かれる。
論文 参考訳(メタデータ) (2024-02-01T19:25:58Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
関係性間の意味的相関は本質的にエッジレベルとエンティティ非依存であることを示す。
本研究では,関係関係のトポロジ・アウェア・コレレーションをモデル化するための新しいサブグラフベース手法,TACOを提案する。
RCNのポテンシャルをさらに活用するために, 完全コモンニアインダストリアルサブグラフを提案する。
論文 参考訳(メタデータ) (2023-09-20T08:11:58Z) - On the Joint Interaction of Models, Data, and Features [82.60073661644435]
本稿では,データとモデル間の相互作用を実験的に解析する新しいツールであるインタラクションテンソルを紹介する。
これらの観測に基づいて,特徴学習のための概念的枠組みを提案する。
この枠組みの下では、一つの仮説に対する期待された精度と一対の仮説に対する合意はどちらも閉形式で導出することができる。
論文 参考訳(メタデータ) (2023-06-07T21:35:26Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - A theory of learning with constrained weight-distribution [17.492950552276067]
構造情報を制約として組み込んだニューラルネットワークにおける学習の統計力学的理論を開発する。
我々は,確率分布のワッサーシュタイン空間における測地流として,我々のアルゴリズムのトレーニングを解釈できることを示した。
我々の理論とアルゴリズムは、ウェイトに関する事前知識を学習に取り入れる新しい戦略を提供し、ニューラルネットワークの構造と機能の間の強力な関係を明らかにする。
論文 参考訳(メタデータ) (2022-06-14T00:43:34Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Adversarially Robust Models may not Transfer Better: Sufficient
Conditions for Domain Transferability from the View of Regularization [17.825841580342715]
機械学習の堅牢性とドメインの一般化は基本的に相関している。
最近の研究では、より堅牢な(逆向きに訓練された)モデルの方がより一般化可能であることが示されている。
彼らの基本的な関係に関する理論的理解が欠如している。
論文 参考訳(メタデータ) (2022-02-03T20:26:27Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
分布外性能は,広範囲なモデルと分布シフトに対する分布内性能と強く相関していることを示す。
具体的には,CIFAR-10 と ImageNet の変種に対する分布内分布と分布外分布性能の強い相関関係を示す。
また,CIFAR-10-Cと組織分類データセットCamelyon17-WILDSの合成分布の変化など,相関が弱いケースについても検討した。
論文 参考訳(メタデータ) (2021-07-09T19:48:23Z) - Prequential MDL for Causal Structure Learning with Neural Networks [9.669269791955012]
ベイジアンネットワークの実用的スコアリング関数を導出するために,事前最小記述長の原理が利用できることを示す。
我々は、調整しなければならない事前やその他の正規化子を誘導するスパーシリティに頼ることなく、可塑性および擬似グラフ構造を得る。
本研究は, 適応速度から因果構造を推定する最近の研究と, 分布変化の源泉から観測結果が得られた場合の因果構造との関係について考察する。
論文 参考訳(メタデータ) (2021-07-02T22:35:21Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
本研究では,潜伏分布とプッシュフォワードマップの複雑さの相互作用が性能に与える影響について検討する。
我々の分析に感銘を受けて、我々はGANパラダイム内での潜伏分布とプッシュフォワードマップの学習を提唱した。
論文 参考訳(メタデータ) (2020-07-29T07:31:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。