How Ambiguous Are the Rationales for Natural Language Reasoning? A Simple Approach to Handling Rationale Uncertainty
- URL: http://arxiv.org/abs/2402.14337v3
- Date: Tue, 04 Mar 2025 11:22:10 GMT
- Title: How Ambiguous Are the Rationales for Natural Language Reasoning? A Simple Approach to Handling Rationale Uncertainty
- Authors: Hazel H. Kim,
- Abstract summary: This study investigates how ambiguous rationales play in model performances of natural language reasoning.<n>We propose a simple way to guide models to choose between two different reasoning paths depending on the ambiguity of the rationales.
- Score: 0.9790236766474201
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The quality of rationales is essential in the reasoning capabilities of language models. Rationales not only enhance reasoning performance in complex natural language tasks but also justify model decisions. However, obtaining impeccable rationales is often impossible. Our study aims to investigate how ambiguous rationales play in model performances of natural language reasoning. We first assess the ambiguity of rationales through the lens of entropy and uncertainty in model prior beliefs, exploring its impact on task performance. We then propose a simple way to guide models to choose between two different reasoning paths depending on the ambiguity of the rationales. Our empirical results demonstrate that this approach leads to robust performance, particularly in adversarial scenarios where rationale quality is inconsistent.
Related papers
- Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
We propose a novel conceptualization framework that forces models to perform conceptual reasoning on abstract questions.
We show that existing large language models fall short on conceptual reasoning, dropping 9% to 28% on various benchmarks.
We then discuss how models can improve since high-level abstract reasoning is key to unbiased and generalizable decision-making.
arXiv Detail & Related papers (2024-03-30T00:53:53Z) - Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training [49.3242278912771]
Multimodal reasoning is a challenging task that requires models to reason across multiple modalities to answer questions.
Existing approaches have made progress by incorporating language and visual modalities into a two-stage reasoning framework.
We propose MC-CoT, a self-consistency training strategy that generates multiple rationales and answers, subsequently selecting the most accurate through a voting process.
arXiv Detail & Related papers (2023-11-23T17:09:48Z) - UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations [62.71847873326847]
We investigate the ability to model unusual, unexpected, and unlikely situations.
Given a piece of context with an unexpected outcome, this task requires reasoning abductively to generate an explanation.
We release a new English language corpus called UNcommonsense.
arXiv Detail & Related papers (2023-11-14T19:00:55Z) - Characterizing Large Language Models as Rationalizers of
Knowledge-intensive Tasks [6.51301154858045]
Large language models (LLMs) are proficient at generating fluent text with minimal task-specific supervision.
We consider the task of generating knowledge-guided rationalization in natural language by using expert-written examples in a few-shot manner.
Surprisingly, crowd-workers preferred knowledge-grounded rationales over crowdsourced rationalizations, citing their factuality, sufficiency, and comprehensive refutations.
arXiv Detail & Related papers (2023-11-09T01:04:44Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Towards Trustworthy Explanation: On Causal Rationalization [9.48539398357156]
We propose a new model of rationalization based on two causal desiderata, non-spuriousness and efficiency.
The superior performance of the proposed causal rationalization is demonstrated on real-world review and medical datasets.
arXiv Detail & Related papers (2023-06-25T03:34:06Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
We propose a benchmark to investigate models' logical reasoning capabilities in complex real-life scenarios.
Based on the multi-hop chain of reasoning, the explanation form includes three main components.
We evaluate the current best models' performance on this new explanation form.
arXiv Detail & Related papers (2022-10-22T16:01:13Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z) - Can Rationalization Improve Robustness? [39.741059642044874]
We investigate whether neural NLP models can provide robustness to adversarial attacks in addition to their interpretable nature.
We generate various types of 'AddText' attacks for both token and sentence-level rationalization tasks.
Our experiments reveal that the rationale models show the promise to improve robustness, while they struggle in certain scenarios.
arXiv Detail & Related papers (2022-04-25T17:02:42Z) - The Irrationality of Neural Rationale Models [6.159428088113691]
We argue to the contrary, with both philosophical perspectives and empirical evidence suggesting that rationale models are, perhaps, less rational and interpretable than expected.
We call for more rigorous and comprehensive evaluations of these models to ensure desired properties of interpretability are indeed achieved.
arXiv Detail & Related papers (2021-10-14T17:22:10Z) - Rationales for Sequential Predictions [117.93025782838123]
Sequence models are a critical component of modern NLP systems, but their predictions are difficult to explain.
We consider model explanations though rationales, subsets of context that can explain individual model predictions.
We propose an efficient greedy algorithm to approximate this objective.
arXiv Detail & Related papers (2021-09-14T01:25:15Z) - Measuring Association Between Labels and Free-Text Rationales [60.58672852655487]
In interpretable NLP, we require faithful rationales that reflect the model's decision-making process for an explained instance.
We demonstrate that pipelines, existing models for faithful extractive rationalization on information-extraction style tasks, do not extend as reliably to "reasoning" tasks requiring free-text rationales.
We turn to models that jointly predict and rationalize, a class of widely used high-performance models for free-text rationalization whose faithfulness is not yet established.
arXiv Detail & Related papers (2020-10-24T03:40:56Z) - Social Commonsense Reasoning with Multi-Head Knowledge Attention [24.70946979449572]
Social Commonsense Reasoning requires understanding of text, knowledge about social events and their pragmatic implications, as well as commonsense reasoning skills.
We propose a novel multi-head knowledge attention model that encodes semi-structured commonsense inference rules and learns to incorporate them in a transformer-based reasoning cell.
arXiv Detail & Related papers (2020-10-12T10:24:40Z) - Why do you think that? Exploring Faithful Sentence-Level Rationales
Without Supervision [60.62434362997016]
We propose a differentiable training-framework to create models which output faithful rationales on a sentence level.
Our model solves the task based on each rationale individually and learns to assign high scores to those which solved the task best.
arXiv Detail & Related papers (2020-10-07T12:54:28Z) - Cognitive Argumentation and the Suppression Task [1.027974860479791]
This paper addresses the challenge of modeling human reasoning, within a new framework called Cognitive Argumentation.
The framework relies on cognitive principles, based on empirical and theoretical work in Cognitive Science, to adapt a general and abstract framework of computational argumentation from AI.
We argue that Cognitive Argumentation provides a coherent and cognitively adequate model for human conditional reasoning.
arXiv Detail & Related papers (2020-02-24T10:30:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.