WindDragon: Enhancing wind power forecasting with Automated Deep
Learning
- URL: http://arxiv.org/abs/2402.14385v1
- Date: Thu, 22 Feb 2024 08:55:21 GMT
- Title: WindDragon: Enhancing wind power forecasting with Automated Deep
Learning
- Authors: Julie Keisler (EDF R\&D OSIRIS, EDF R\&D), Etienne Le Naour (ISIR)
- Abstract summary: This paper presents an innovative approach to short-term (1 to 6 hour horizon) windpower forecasting at a national level.
The method leverages Automated Deep Learning combined with Numerical Weather Predictions wind speed maps to accurately forecast wind power.
- Score: 0.5755004576310334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving net zero carbon emissions by 2050 requires the integration of
increasing amounts of wind power into power grids. This energy source poses a
challenge to system operators due to its variability and uncertainty.
Therefore, accurate forecasting of wind power is critical for grid operation
and system balancing. This paper presents an innovative approach to short-term
(1 to 6 hour horizon) windpower forecasting at a national level. The method
leverages Automated Deep Learning combined with Numerical Weather Predictions
wind speed maps to accurately forecast wind power.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - A novel automatic wind power prediction framework based on multi-time
scale and temporal attention mechanisms [6.120692237856329]
Wind power generation is characterized by volatility, intermittence, and randomness.
Traditional wind power forecasting systems primarily focus on ultra-short-term or short-term forecasts.
We propose an automatic framework capable of forecasting wind power across multi-time scale.
arXiv Detail & Related papers (2023-02-02T17:03:08Z) - SDWPF: A Dataset for Spatial Dynamic Wind Power Forecasting Challenge at
KDD Cup 2022 [42.72560292756442]
We present a unique Spatial Dynamic Wind Power Forecasting dataset: SDWPF.
This dataset includes the spatial distribution of wind turbines, as well as the dynamic context factors.
We use this dataset to launch the Baidu KDD Cup 2022 to examine the limit of current WPF solutions.
arXiv Detail & Related papers (2022-08-08T18:38:45Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Measuring Wind Turbine Health Using Drifting Concepts [55.87342698167776]
We propose two new approaches for the analysis of wind turbine health.
The first method aims at evaluating the decrease or increase in relatively high and low power production.
The second method evaluates the overall drift of the extracted concepts.
arXiv Detail & Related papers (2021-12-09T14:04:55Z) - Deep Spatio-Temporal Wind Power Forecasting [4.219722822139438]
We develop a deep learning approach based on encoder-decoder structure.
Our model forecasts wind power generated by a wind turbine using its spatial location relative to other turbines and historical wind speed data.
arXiv Detail & Related papers (2021-09-29T16:26:10Z) - Wind Power Projection using Weather Forecasts by Novel Deep Neural
Networks [0.0]
Using optimized machine learning algorithms, it is possible to find obscured patterns in the observations and obtain meaningful data.
The paper explores the use of both parametric and the non-parametric models for calculating wind power prediction using power curves.
arXiv Detail & Related papers (2021-08-22T17:46:36Z) - Spatio-temporal estimation of wind speed and wind power using machine
learning: predictions, uncertainty and technical potential [0.0]
The wind power estimate presented here represents an important input for planners to support the design of energy systems with increased wind power generation.
The methodology is applied to the study of hourly wind power potential on a grid of $250times 250$ m$2$ for turbines of 100 meters hub height in Switzerland.
arXiv Detail & Related papers (2021-07-29T09:52:36Z) - Performance Comparison of Different Machine Learning Algorithms on the
Prediction of Wind Turbine Power Generation [0.0]
Wind power penetration has increased the difficulty and complexity in dispatching and planning of electric power systems.
It is needed to make the high-precision wind power prediction in order to balance the electrical power.
arXiv Detail & Related papers (2021-05-11T17:02:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.