Self-supervised Visualisation of Medical Image Datasets
- URL: http://arxiv.org/abs/2402.14566v2
- Date: Wed, 24 Jul 2024 21:52:29 GMT
- Title: Self-supervised Visualisation of Medical Image Datasets
- Authors: Ifeoma Veronica Nwabufo, Jan Niklas Böhm, Philipp Berens, Dmitry Kobak,
- Abstract summary: A self-supervised learning method, $t$-SimCNE, uses contrastive learning to directly train a 2D representation suitable for visualisation.
In this work, we used $t$-SimCNE to visualise medical image datasets, including examples from dermatology, histology, and blood microscopy.
- Score: 13.05427848112207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised learning methods based on data augmentations, such as SimCLR, BYOL, or DINO, allow obtaining semantically meaningful representations of image datasets and are widely used prior to supervised fine-tuning. A recent self-supervised learning method, $t$-SimCNE, uses contrastive learning to directly train a 2D representation suitable for visualisation. When applied to natural image datasets, $t$-SimCNE yields 2D visualisations with semantically meaningful clusters. In this work, we used $t$-SimCNE to visualise medical image datasets, including examples from dermatology, histology, and blood microscopy. We found that increasing the set of data augmentations to include arbitrary rotations improved the results in terms of class separability, compared to data augmentations used for natural images. Our 2D representations show medically relevant structures and can be used to aid data exploration and annotation, improving on common approaches for data visualisation.
Related papers
- ISImed: A Framework for Self-Supervised Learning using Intrinsic Spatial Information in Medical Images [0.0]
This paper demonstrates that spatial information can be used to learn interpretable representations in medical images using Self-Supervised Learning (SSL)
We establish a self-supervised objective that creates a latent representation capable of capturing its location in the physical realm.
We show that our method can efficiently learn representations that capture the underlying structure of the data and can be used to transfer to a downstream classification task.
arXiv Detail & Related papers (2024-10-22T12:21:39Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.
Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Best of Both Worlds: Multimodal Contrastive Learning with Tabular and
Imaging Data [7.49320945341034]
We propose the first self-supervised contrastive learning framework to train unimodal encoders.
Our solution combines SimCLR and SCARF, two leading contrastive learning strategies.
We show the generalizability of our approach to natural images using the DVM car advertisement dataset.
arXiv Detail & Related papers (2023-03-24T15:44:42Z) - Enhanced Transfer Learning Through Medical Imaging and Patient
Demographic Data Fusion [0.0]
We examine the performance enhancement in classification of medical imaging data when image features are combined with associated non-image data.
We utilise transfer learning with networks pretrained on ImageNet used directly as feature extractors and fine tuned on the target domain.
arXiv Detail & Related papers (2021-11-29T09:11:52Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
We propose an adversarial data augmentation approach to improve the efficiency in utilizing training data.
We present a generic task-driven learning framework, which jointly optimize a data augmentation model and a segmentation network during training.
The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks.
arXiv Detail & Related papers (2021-08-07T11:32:37Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
Self-supervised representation learning has achieved remarkable success in recent years.
Yet to build truly intelligent agents, we must construct representation learning algorithms that can learn from environments.
We propose a framework, curious representation learning, which jointly learns a reinforcement learning policy and a visual representation model.
arXiv Detail & Related papers (2021-05-03T17:59:20Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.