Barttender: An approachable & interpretable way to compare medical imaging and non-imaging data
- URL: http://arxiv.org/abs/2411.12707v1
- Date: Tue, 19 Nov 2024 18:22:25 GMT
- Title: Barttender: An approachable & interpretable way to compare medical imaging and non-imaging data
- Authors: Ayush Singla, Shakson Isaac, Chirag J. Patel,
- Abstract summary: Barttender is an interpretable framework that uses deep learning for the comparison of the utility of imaging versus non-imaging data for tasks like disease prediction.
Our framework allows researchers to evaluate differences in utility through performance measures, as well as local (sample-level) and global (population-level) explanations.
- Score: 0.13406576408866772
- License:
- Abstract: Imaging-based deep learning has transformed healthcare research, yet its clinical adoption remains limited due to challenges in comparing imaging models with traditional non-imaging and tabular data. To bridge this gap, we introduce Barttender, an interpretable framework that uses deep learning for the direct comparison of the utility of imaging versus non-imaging tabular data for tasks like disease prediction. Barttender converts non-imaging tabular features, such as scalar data from electronic health records, into grayscale bars, facilitating an interpretable and scalable deep learning based modeling of both data modalities. Our framework allows researchers to evaluate differences in utility through performance measures, as well as local (sample-level) and global (population-level) explanations. We introduce a novel measure to define global feature importances for image-based deep learning models, which we call gIoU. Experiments on the CheXpert and MIMIC datasets with chest X-rays and scalar data from electronic health records show that Barttender performs comparably to traditional methods and offers enhanced explainability using deep learning models.
Related papers
- Predicting Stroke through Retinal Graphs and Multimodal Self-supervised Learning [0.46835339362676565]
Early identification of stroke is crucial for intervention, requiring reliable models.
We proposed an efficient retinal image representation together with clinical information to capture a comprehensive overview of cardiovascular health.
arXiv Detail & Related papers (2024-11-08T14:40:56Z) - Self-supervised Visualisation of Medical Image Datasets [13.05427848112207]
A self-supervised learning method, $t$-SimCNE, uses contrastive learning to directly train a 2D representation suitable for visualisation.
In this work, we used $t$-SimCNE to visualise medical image datasets, including examples from dermatology, histology, and blood microscopy.
arXiv Detail & Related papers (2024-02-22T14:04:41Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Best of Both Worlds: Multimodal Contrastive Learning with Tabular and
Imaging Data [7.49320945341034]
We propose the first self-supervised contrastive learning framework to train unimodal encoders.
Our solution combines SimCLR and SCARF, two leading contrastive learning strategies.
We show the generalizability of our approach to natural images using the DVM car advertisement dataset.
arXiv Detail & Related papers (2023-03-24T15:44:42Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
We extend conventional contrastive frameworks with a novel metadata-enhanced strategy.
Our approach employs widely available patient metadata to approximate the true set of inter-image contrastive relationships.
Our approach outperforms both standard contrastive methods and a retinal image foundation model in five out of six image-level downstream tasks.
arXiv Detail & Related papers (2022-08-04T08:53:15Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.