論文の概要: Enhancing SCADA Security: Developing a Host-Based Intrusion Detection System to Safeguard Against Cyberattacks
- arxiv url: http://arxiv.org/abs/2402.14599v1
- Date: Thu, 22 Feb 2024 14:47:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:46:38.677723
- Title: Enhancing SCADA Security: Developing a Host-Based Intrusion Detection System to Safeguard Against Cyberattacks
- Title(参考訳): SCADAセキュリティの強化:サイバー攻撃対策のためのホストベースの侵入検知システムの開発
- Authors: Omer Sen, Tarek Hassan, Andreas Ulbig, Martin Henze,
- Abstract要約: SCADAシステムはサイバー攻撃を受けやすく、重要なインフラにリスクを及ぼす。
本研究は、スマートグリッドにおけるSCADAシステムに適したホストベースの侵入検知システムを提案する。
- 参考スコア(独自算出の注目度): 2.479074862022315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing reliance of smart grids on correctly functioning SCADA systems and their vulnerability to cyberattacks, there is a pressing need for effective security measures. SCADA systems are prone to cyberattacks, posing risks to critical infrastructure. As there is a lack of host-based intrusion detection systems specifically designed for the stable nature of SCADA systems, the objective of this work is to propose a host-based intrusion detection system tailored for SCADA systems in smart grids. The proposed system utilizes USB device identification, flagging, and process memory scanning to monitor and detect anomalies in SCADA systems, providing enhanced security measures. Evaluation in three different scenarios demonstrates the tool's effectiveness in detecting and disabling malware. The proposed approach effectively identifies potential threats and enhances the security of SCADA systems in smart grids, providing a promising solution to protect against cyberattacks.
- Abstract(参考訳): スマートグリッドが正しく機能するSCADAシステムへの依存度の増加とサイバー攻撃に対する脆弱性により、効果的なセキュリティ対策の必要性が高まっている。
SCADAシステムはサイバー攻撃を受けやすく、重要なインフラにリスクを及ぼす。
本研究の目的は,SCADAシステムの安定性に特化して設計されたホストベースの侵入検知システムがないため,スマートグリッドにおけるSCADAシステムに適したホストベースの侵入検知システムを提案することである。
提案システムでは,USB デバイス識別,フラグング,プロセスメモリスキャンを用いて,SCADA システムの異常を監視・検出し,セキュリティ対策を強化している。
3つの異なるシナリオにおける評価は、マルウェアの検出と無効化におけるツールの有効性を示している。
提案手法は、潜在的な脅威を効果的に識別し、スマートグリッドにおけるSCADAシステムのセキュリティを強化し、サイバー攻撃から保護するための有望な解決策を提供する。
関連論文リスト
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Ensemble Defense System: A Hybrid IDS Approach for Effective Cyber Threat Detection [0.0]
Ensemble Defense System (EDS) は、サイバー攻撃中に組織を監視し警告するために複数のセキュリティツールを集約するサイバーセキュリティフレームワークである。
提案するEDSは,シグネチャベースIDSと異常ベースIDSツールのハイブリッドを導入することで,包括的な侵入検知システム(IDS)機能を活用する。
EDSの有効性は、ポートスキャン、特権エスカレーション、DoS(Denial-of-Service)など、さまざまなアタックを実行するbashスクリプトからのペイロードを通じて評価される。
論文 参考訳(メタデータ) (2024-01-07T14:07:00Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - A Novel Online Incremental Learning Intrusion Prevention System [2.5234156040689237]
本稿では,自己組織型インクリメンタルニューラルネットワークとサポートベクトルマシンを併用したネットワーク侵入防止システムを提案する。
提案システムは,その構造上,シグネチャやルールに依存しないセキュリティソリューションを提供するとともに,既知の攻撃や未知の攻撃を高精度にリアルタイムに軽減することができる。
論文 参考訳(メタデータ) (2021-09-20T13:30:11Z) - GRAVITAS: Graphical Reticulated Attack Vectors for Internet-of-Things
Aggregate Security [5.918387680589584]
IoT(Internet-of-Things)とサイバー物理システム(CPS)は、複雑なネットワークトポロジで接続された何千ものデバイスで構成されている可能性がある。
我々は、未発見の攻撃ベクトルを識別できるIoT/CPSのための包括的リスク管理システムGRAVITASについて述べる。
論文 参考訳(メタデータ) (2021-05-31T19:35:23Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
ThreatRaptorは、OSCTIを使用してコンピュータシステムにおけるサイバー脅威ハンティングを容易にするシステムです。
ThreatRaptorは、(1)構造化OSCTIテキストから構造化された脅威行動を抽出する非監視で軽量で正確なNLPパイプライン、(2)簡潔で表現力のあるドメイン固有クエリ言語であるTBQLを提供し、悪意のあるシステムアクティビティを探し、(3)抽出された脅威行動からTBQLクエリを自動的に合成するクエリ合成メカニズムを提供する。
論文 参考訳(メタデータ) (2021-01-17T19:44:09Z) - Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [24.60052335548398]
機械学習(ML)技術は、スマートサイバーフィジカルシステム(CPS)とIoT(Internet-of-Things)によって急速に採用されています。
ハードウェアとソフトウェアの両方のレベルで、さまざまなセキュリティと信頼性の脅威に脆弱であり、その正確性を損ないます。
本稿では、現代のMLシステムの顕著な脆弱性を要約し、これらの脆弱性に対する防御と緩和技術の成功を強調する。
論文 参考訳(メタデータ) (2021-01-04T20:06:56Z) - Securing of Unmanned Aerial Systems (UAS) against security threats using
human immune system [1.2691047660244335]
人体免疫システム(HIS)を用いた安全対策のための侵入検知システム(IDS)が提案されている。
IDSはターゲットシステムに侵入する試みを検知し、応答するために使用される。
論文 参考訳(メタデータ) (2020-03-01T19:05:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。