論文の概要: Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
- arxiv url: http://arxiv.org/abs/2402.14781v2
- Date: Tue, 16 Jul 2024 14:27:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 21:30:11.461010
- Title: Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
- Title(参考訳): 構造Marginalizationと自己回帰順序による効果的なベイズ因果推論
- Authors: Christian Toth, Christian Knoll, Franz Pernkopf, Robert Peharz,
- Abstract要約: 構造学習問題を因果順序と各変数に対する因果順序を推定する親集合に分解する。
提案手法は, スケールフリーおよびエルドス・レーニグラフ構造を持つ非線形付加雑音ベンチマークのシミュレーションによる構造学習における最先端の手法である。
- 参考スコア(独自算出の注目度): 16.682775063684907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian causal inference (BCI) naturally incorporates epistemic uncertainty about the true causal model into down-stream causal reasoning tasks by posterior averaging over causal models. However, this poses a tremendously hard computational problem due to the intractable number of causal structures to marginalise over. In this work, we decompose the structure learning problem into inferring (i) a causal order and (ii) a parent set for each variable given a causal order. By limiting the number of parents per variable, we can exactly marginalise over the parent sets in polynomial time, which leaves only the causal order to be marginalised. To this end, we propose a novel autoregressive model over causal orders (ARCO) learnable with gradient-based methods. Our method yields state-of-the-art in structure learning on simulated non-linear additive noise benchmarks with scale-free and Erdos-Renyi graph structures, and competitive results on real-world data. Moreover, we illustrate that our method accurately infers interventional distributions, which allows us to estimate posterior average causal effects and many other causal quantities of interest.
- Abstract(参考訳): ベイズ因果推論(BCI)は、真の因果モデルに関する疫学的な不確実性を、因果モデルに対する後部平均化によって下流因果推論タスクに自然に組み込む。
しかし、これは難解な数の因果構造が疎外されるため、非常に難しい計算問題を引き起こす。
本研究では,構造学習問題を推論に分解する。
(i)因果順序、及び
(ii)各変数の親集合に因果順序を付与する。
変数あたりの親数を制限することで、多項式時間で親集合を正確に極小化することができ、因果順序のみを極小化することができる。
そこで本研究では,勾配法で学習可能な因果順序(ARCO)に対する自己回帰モデルを提案する。
提案手法は, スケールフリーおよびエルドス・レーニグラフ構造を用いた非線形加法雑音ベンチマークによる構造学習の最先端と実世界のデータに対する競合結果を得る。
さらに,本手法は介入分布を正確に推算し,平均因果効果および他の多くの因果量の推定を行う。
関連論文リスト
- A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
因果表現学習(Causal representation learning)は、データセットの変動の要因は、実際には因果関係にあると主張している。
本稿では,遅延付加雑音モデルを用いたデータ生成過程を考慮した,教師なし表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-11T18:12:05Z) - Learning Latent Structural Causal Models [31.686049664958457]
機械学習タスクでは、画像ピクセルや高次元ベクトルのような低レベルのデータを扱うことが多い。
本稿では,潜在構造因果モデルの因果変数,構造,パラメータについて共同推論を行う,抽出可能な近似推定手法を提案する。
論文 参考訳(メタデータ) (2022-10-24T20:09:44Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。