論文の概要: The New Era of Dynamic Pricing: Synergizing Supervised Learning and
Quadratic Programming
- arxiv url: http://arxiv.org/abs/2402.14844v1
- Date: Mon, 19 Feb 2024 12:48:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-03 19:39:38.821377
- Title: The New Era of Dynamic Pricing: Synergizing Supervised Learning and
Quadratic Programming
- Title(参考訳): 動的価格の新しい時代:教師付き学習と二次プログラミングの融合
- Authors: Gustavo Bramao, Ilia Tarygin
- Abstract要約: 本稿では,自動車レンタル業界における動的価格モデルの改良を目的とした,教師付き学習と2次プログラミングの新たな組み合わせについて検討する。
我々は、p値、ホモセダスティック性、エラー正規性といった、通常最小二乗(OLS)メトリクスによって通知される価格弾性の動的モデリングを利用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we explore a novel combination of supervised learning and
quadratic programming to refine dynamic pricing models in the car rental
industry. We utilize dynamic modeling of price elasticity, informed by ordinary
least squares (OLS) metrics such as p-values, homoscedasticity, error
normality. These metrics, when their underlying assumptions hold, are integral
in guiding a quadratic programming agent. The program is tasked with optimizing
margin for a given finite set target.
- Abstract(参考訳): 本稿では,カーレンタル業界における動的価格モデルを洗練するための教師付き学習と二次プログラミングの新たな組み合わせについて検討する。
価格弾性の動的モデリングを用いて,p値,ホモシedasticity,error normalityといった平均最小二乗法(ols)の指標から情報を得た。
これらの測度は、基礎となる仮定が成り立つとき、二次プログラミングエージェントを導くのに不可欠である。
プログラムは与えられた有限集合の目標に対してマージンを最適化する。
関連論文リスト
- Training Deep Learning Models with Norm-Constrained LMOs [56.00317694850397]
正規球上の線形最小化オラクル(LMO)を利用する最適化手法について検討する。
この問題の幾何学に適応するためにLMOを用いた新しいアルゴリズム群を提案し, 意外なことに, 制約のない問題に適用可能であることを示す。
論文 参考訳(メタデータ) (2025-02-11T13:10:34Z) - The Sample Complexity of Online Reinforcement Learning: A Multi-model Perspective [55.15192437680943]
連続状態と行動空間を持つ非線形力学系に対するオンライン強化学習のサンプル複雑性について検討した。
我々のアルゴリズムは、その単純さ、事前知識を組み込む能力、そして良心的な過渡的行動のために、実際に有用である可能性が高い。
論文 参考訳(メタデータ) (2025-01-27T10:01:28Z) - Pricing American Options using Machine Learning Algorithms [0.0]
本研究は,モンテカルロシミュレーションを用いて,機械学習アルゴリズムのアメリカ人オプションの価格設定への応用について検討する。
Black-Scholes-Mertonフレームワークのような伝統的なモデルは、しばしばアメリカの選択肢の複雑さに適切に対処できない。
モンテカルロ法とLast Square Methodを併用して機械学習を行った。
論文 参考訳(メタデータ) (2024-09-05T02:52:11Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Contextual Dynamic Pricing: Algorithms, Optimality, and Local Differential Privacy Constraints [10.057344315478709]
企業が商品をT$で販売する状況的動的価格問題について検討する。
まず、最適後悔上限は、対数係数まで、次数$sqrtdT$であることを示す。
理論的結果の重要な洞察は、動的価格と文脈的マルチアームバンディット問題との本質的な関係である。
論文 参考訳(メタデータ) (2024-06-04T15:44:10Z) - Modeling Choice via Self-Attention [8.394221523847325]
注意に基づく選択モデルはHalo Multinomial Logit(Halo-MNL)モデルの低最適一般化であることを示す。
また、実データから選択を推定するための最初の現実的な尺度を確立し、既存のモデルの評価を行う。
論文 参考訳(メタデータ) (2023-11-11T11:13:07Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Markdowns in E-Commerce Fresh Retail: A Counterfactual Prediction and
Multi-Period Optimization Approach [29.11201102550876]
半パラメトリック構造モデルを構築し、価格の弾力性を学習し、対物需要を予測する。
本稿では,有限販売地平線上での消耗品全体の利益を最大化するために,多周期動的価格アルゴリズムを提案する。
提案されたフレームワークは、よく知られたeコマースの新鮮な小売シナリオであるFreshippoにうまくデプロイされている。
論文 参考訳(メタデータ) (2021-05-18T07:01:37Z) - Dynamic Pricing and Learning under the Bass Model [16.823029377470366]
マーケットサイズが$m$である場合、オーダー$tilde O(m2/3)$の確率後悔保証を満足するアルゴリズムを開発する。
多くの後悔の分析結果とは異なり、現在の問題では市場規模$m$が複雑さの基本的な要因である。
論文 参考訳(メタデータ) (2021-03-09T03:27:33Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。