PUAD: Frustratingly Simple Method for Robust Anomaly Detection
- URL: http://arxiv.org/abs/2402.15143v1
- Date: Fri, 23 Feb 2024 06:57:31 GMT
- Title: PUAD: Frustratingly Simple Method for Robust Anomaly Detection
- Authors: Shota Sugawara, Ryuji Imamura
- Abstract summary: We argue that logical anomalies, such as the wrong number of objects, can not be well-represented by the spatial feature maps.
We propose a method that incorporates a simple out-of-distribution detection method on the feature space against state-of-the-art reconstruction-based approaches.
Our method achieves state-of-the-art performance on the MVTec LOCO AD dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Developing an accurate and fast anomaly detection model is an important task
in real-time computer vision applications. There has been much research to
develop a single model that detects either structural or logical anomalies,
which are inherently distinct. The majority of the existing approaches
implicitly assume that the anomaly can be represented by identifying the
anomalous location. However, we argue that logical anomalies, such as the wrong
number of objects, can not be well-represented by the spatial feature maps and
require an alternative approach. In addition, we focused on the possibility of
detecting logical anomalies by using an out-of-distribution detection approach
on the feature space, which aggregates the spatial information of the feature
map. As a demonstration, we propose a method that incorporates a simple
out-of-distribution detection method on the feature space against
state-of-the-art reconstruction-based approaches. Despite the simplicity of our
proposal, our method PUAD (Picturable and Unpicturable Anomaly Detection)
achieves state-of-the-art performance on the MVTec LOCO AD dataset.
Related papers
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
Existing AI-generated image (AIGI) detection methods often suffer from limited generalization performance.
In this paper, we identify a crucial yet previously overlooked asymmetry phenomenon in AIGI detection.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Towards Interpretable Anomaly Detection via Invariant Rule Mining [2.538209532048867]
In this work, we pursue highly interpretable anomaly detection via invariant rule mining.
Specifically, we leverage decision tree learning and association rule mining to automatically generate invariant rules.
The generated invariant rules can provide explicit explanation of anomaly detection results and thus are extremely useful for subsequent decision-making.
arXiv Detail & Related papers (2022-11-24T13:03:20Z) - FRE: A Fast Method For Anomaly Detection And Segmentation [5.0468312081378475]
This paper presents a principled approach for solving the visual anomaly detection and segmentation problem.
We propose the application of linear statistical dimensionality reduction techniques on the intermediate features produced by a pretrained DNN on the training data.
We show that the emphfeature reconstruction error (FRE), which is the $ell$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is extremely effective for anomaly detection.
arXiv Detail & Related papers (2022-11-23T01:03:20Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Framing Algorithmic Recourse for Anomaly Detection [18.347886926848563]
We present an approach -- Context preserving Algorithmic Recourse for Anomalies in Tabular data (CARAT)
CARAT uses a transformer based encoder-decoder model to explain an anomaly by finding features with low likelihood.
Semantically coherent counterfactuals are generated by modifying the highlighted features, using the overall context of features in the anomalous instance(s)
arXiv Detail & Related papers (2022-06-29T03:30:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z) - DR{\AE}M -- A discriminatively trained reconstruction embedding for
surface anomaly detection [14.234783431842542]
We propose a discriminatively trained reconstruction anomaly embedding model (DRAEM)
DRAEM learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples.
On the challenging MVTec anomaly detection dataset, DRAEM outperforms the current state-of-the-art unsupervised methods by a large margin.
arXiv Detail & Related papers (2021-08-17T13:17:29Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
Convolutional Neural Network (CNN) techniques have proven to be very useful in image-based anomaly detection applications.
We introduce a transfer learning framework for anomaly detection based on similarity measure with a Model of Normality (MoN)
We show that with the proposed threshold settings, a significant performance improvement can be achieved.
arXiv Detail & Related papers (2020-11-12T05:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.