Machine Unlearning of Pre-trained Large Language Models
- URL: http://arxiv.org/abs/2402.15159v3
- Date: Thu, 30 May 2024 15:44:51 GMT
- Title: Machine Unlearning of Pre-trained Large Language Models
- Authors: Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, Xiang Yue,
- Abstract summary: This study investigates the concept of the right to be forgotten' within the context of large language models (LLMs)
We explore machine unlearning as a pivotal solution, with a focus on pre-trained models.
- Score: 17.40601262379265
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study investigates the concept of the `right to be forgotten' within the context of large language models (LLMs). We explore machine unlearning as a pivotal solution, with a focus on pre-trained models--a notably under-researched area. Our research delineates a comprehensive framework for machine unlearning in pre-trained LLMs, encompassing a critical analysis of seven diverse unlearning methods. Through rigorous evaluation using curated datasets from arXiv, books, and GitHub, we establish a robust benchmark for unlearning performance, demonstrating that these methods are over $10^5$ times more computationally efficient than retraining. Our results show that integrating gradient ascent with gradient descent on in-distribution data improves hyperparameter robustness. We also provide detailed guidelines for efficient hyperparameter tuning in the unlearning process. Our findings advance the discourse on ethical AI practices, offering substantive insights into the mechanics of machine unlearning for pre-trained LLMs and underscoring the potential for responsible AI development.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning [45.78096783448304]
In this work, seeking data efficiency, we design unsupervised pretraining for PDE operator learning.
We mine unlabeled PDE data without simulated solutions, and we pretrain neural operators with physics-inspired reconstruction-based proxy tasks.
Our method is highly data-efficient, more generalizable, and even outperforms conventional vision-pretrained models.
arXiv Detail & Related papers (2024-02-24T06:27:33Z) - Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development [5.207307163958806]
We present an empirical study of the Full.
Time Complexity (FPTC) approach by Zheng et al.
We study the formulations proposed for the Logistic Regression and Random Forest classifiers.
We observe how, from the conducted study, the prediction of training time is strictly related to the context.
arXiv Detail & Related papers (2023-09-20T11:35:03Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less
Forgetting [66.45372974713189]
We propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks.
Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark.
We provide open-source RecAdam, which integrates the proposed mechanisms into Adam to facility the NLP community.
arXiv Detail & Related papers (2020-04-27T08:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.